原 文:Subscripts and superscripts
译 者:Xovee
翻译时间:2020年6月18日
上标和下标
在数学表达式中,上下标的使用是非常普遍的,例如各种指数、索引、特殊的操作符等。这篇文章介绍了如何在简单的数学表达式中添加上下标。
介绍
定积分是一种非常常用的数学表达式,下面是一个例子:
\[ \int\limits_0^1 x^2 + y^2 \ dx \]
在 LaTeX 中,上下标可以使用 ^
和 _
来添加,例如在上面的例子中,x 和 y 的指数。这种用法还可以使用在其他的数学表达式中:例如积分号,你可以使用 _
来添加积分下限,^
来添加积分上限。命令 \limits
改变了积分号中上下限的位置(见参考指南):
∫
0
1
\int_0^1
∫01
∫
0
1
\int\limits_0^1
0∫1
更多详细的例子
符号 _
和 ^
还可以使用在同一个表达式里,例如:
\[ a_1^2 + a_2^2 = a_3^2 \]
a 1 2 + a 2 2 = a 3 2 a_1^2 + a_2^2 = a_3^2 a12+a22=a32
如果表达式中含有很长的上标或下标,它们需要被包含在大括号之中,因为 LaTeX 默认只将 ^
和 _
之后的一个字符当作上标或下标:
\[ x^{2 \alpha} - 1 = y_{ij} + y_{ij} \]
x
2
α
−
1
=
y
i
j
+
y
i
j
x^{2 \alpha} - 1 = y_{ij} + y_{ij}
x2α−1=yij+yij
上标和下标还可以被嵌套、组合使用。需要注意的是,在嵌套使用的时候,每一个命令只能对应一个元素,这个元素可以是一个字符或数字,例如上面的例子,也可以是更复杂的数学表达式,例如:
\[ (a^n)^{r+s} = a^{nr+ns} \]
(
a
n
)
r
+
s
=
a
n
r
+
n
s
(a^n)^{r+s} = a^{nr+ns}
(an)r+s=anr+ns
在 Overleaf 中打开这个例子
操作符的上下标
有些数学操作符要求上下标。最常见的例子是积分号\int
以及求和\sum
操作符,它们的上下限由上标和下标准确地定义。
\[ \sum_{i=1}^{\infty} \frac{1}{n^s}
= \prod_p \frac{1}{1 - p^{-s}} \]
∑ i = 1 ∞ 1 n s = ∏ p 1 1 − p − s \sum_{i=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1 - p^{-s}} i=1∑∞ns1=p∏1−p−s1
更多的例子见参考指南。
参考指南
其余的例子包括:
LaTeX 标记 | 输出 |
---|---|
a_{n_i} | a n i a_{n_i} ani |
\int_{i=1}^n | ∫ i = 1 n \int_{i=1}^n ∫i=1n |
\sum_{i=1}^{\infty} | ∑ i = 1 ∞ \sum_{i=1}^{\infty} ∑i=1∞ |
\prod_{i=1}^n | ∏ i = 1 n \prod_{i=1}^n ∏i=1n |
\cup_{i=1}^n | ∪ i = 1 n \cup_{i=1}^n ∪i=1n |
\cap_{i=1}^n | ∩ i = 1 n \cap_{i=1}^n ∩i=1n |
\oint_{i=1}^n | ∮ i = 1 n \oint_{i=1}^n ∮i=1n |
\coprod_{i=1}^n | ∐ i = 1 n \coprod_{i=1}^n ∐i=1n |
还有一些大小更大的表达式,例如 bigcup
和 bigcap
。
扩展阅读
更多信息请见:
- 希腊字母和数学符号列表
- 操作符
- 积分、求和、极限
- 括号
- LaTeX 符号大全(其中详细地介绍了
amssymb
包中的数学符号) - 一个并不简短的 LaTeX 2e 介绍
- 使用
amsmath
来对齐公式