大梵天的恩赐
Problem Description
许久没有抽到SSR的子浩君,祈求上天赐给他一个SSR,他的诚信感动了大梵天,于是,大梵天又弄了一个2*n层的汉诺塔,一共有n种大小,每种大小两个,从上往下按照从小到大依次放置,如果子浩君能够按照汉诺塔的规则摆放好,那么就赐予子浩君一个SSR。
然而当子浩君摆好的时候,大梵天说:“No,no,no,这不是我想要的,我需要初始情况是什么样的结果就是什么样的,即使大小相同的顺序也不能调换。”,于是施加了魔法回到了初始状态。
所以,问可怜的子浩君已经搬运了多少步,还需要搬运多少步。
子浩君虽然很非,但很聪明的,所以会选择最少步数的方案^_^
Input
多组测试数据。
每组数据开始是一个整数,n(0
Output
输出两个个整数,分别代表子浩君已经搬运了多少步和还需要搬运多少步。
由于结果很大,你需要模上一个大数233333333(8个3)
Sample Input
1
1234567
Sample Output
2 3
109259870 218519739
题意:
汉诺塔的变形,每种大小的汉诺塔变成了两个,问这两个结果顺序无所谓和顺序有不变的的移动步数各为多少?
解题思路:
以下是出题人的题解
对于n种大小盘子的,设顺序无关系的步数为f(n),顺序有关的步数为g(n),首先,对于一个大小的盘子,很容易理解,显然,f(1)=2,g(1)=3。
对于顺序无关的,我们很容易想到这个递推式:
f(n)=f(n−1)+2+f(n−1)f(n)=f(n−1)+2+f(n−1)
同时,我们可以观察到,每调用一次这个方法,最大的两个顺序会反转,所以调用偶数次时,顺序不会变化,保证这里是偶数次后,由于后面的递推的项也是偶输次,所以也是可以保证的,因此,我们可以有以下的递推式:
g(n)=f(n−1)+2+f(n−1)+2+g(n−1)g(n)=f(n−1)+2+f(n−1)+2+g(n−1)
或者:
g(n)=f(n − 1)+1 + f(n − 1)+1 + f(n − 1)+1 + f(n − 1)
我的解法:首先观察数据发现 ans2=ans1*2-1。于是~只要求出ans1就好啦。只要计算无所谓结果顺序的,假设a[i]表示 2 * i 层的汉诺塔移到另一根柱子上需要的移动次数。那么对于2 * n层来说,先把上面 2 * (n-1) 层从A移到B,再把剩下两个移动到C,这里用两次,再把2 *(n-1)层移到C。一共 2∗a[n−1]+2 次。
Code:
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long int LL;
const int maxn=1234567+1;
const int mod=233333333;
int ans[maxn]={0,2};
int main()
{
for(int i=2;i<=1234567;i++)
{
ans[i]=(2*ans[i-1]+2)%mod;
}
int n;
while(scanf("%d",&n)!=EOF)
{
int res1=ans[n];
int res2=(ans[n]*2-1)%mod;
printf("%d %d\n",res1,res2);
}
return 0;
}
/**********************************************************************
Problem: 1972
User: HN0017
Language: C++
Result: AC
Time:1604 ms
Memory:6840 kb
**********************************************************************/