UVA 12034:Race (动态规划)

Race

Time limit:1000 ms OS:Linux

点击查看题目内容

题意:

现在有n匹马,要求安排出场顺序,可以有多匹马同时出场,问一共有多少种方式。

解题思路:

这里写图片描述

 设一共i匹马时,出场次序数量为 j 时的出场方式为 a[i][j] 
1匹马的情况:a[1][1]=1 没啥好说的
2匹马的情况:a[2][1]=1 , 对于a[2][2] 只能在a[1][1]的基础上把第二匹马放到前面或后面, 
            所以a[2][2]=a[1][1]*2=2
3匹马的情况:a[3][1]=1 , 对于 a[3][2],就可以在a[2][1]的基础上前后加一条,也可在a[2][2]的基础上任选和其中一匹马同时跑,由此 
            a[3][2]=a[2][1]*2+a[2][2]*2

图虽然画的比较难看。。还是看图吧
总之由上面的规律就能得出状态转移方程

dp[i][j]=dp[i1][j1]j+dp[i1][j]j


Code:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;

const int maxn=1005;
const int mod=10056;
int dp[maxn][maxn];

int main()
{
    mem(dp,0);
    for(int i=1;i<=1000;i++)
    {
        for(int j=1;j<=i;j++)
        {
            if(j==1)
                dp[i][j]=1;
            else
                dp[i][j]=(dp[i-1][j-1]*j+dp[i-1][j]*j)%mod;
        }
    }
    int T;
    cin>>T;
    for(int ca=1;ca<=T;ca++)
    {
        int n;
        cin>>n;
        int sum=0;
        for(int i=1;i<=n;i++)
            sum=(sum+dp[n][i])%mod;
        cout<<"Case "<<ca<<": "<<sum<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值