为了庆贺班级在校运动会上取得全校第一名成绩,班主任决定开一场庆功会,为此拨款购买奖品犒劳运动员。
期望拨款金额能购买最大价值的奖品,可以补充他们的精力和体力。
输入格式
第一行二个数n,m,其中n代表希望购买的奖品的种数,m表示拨款金额。
接下来n行,每行3个数,v、w、s,分别表示第I种奖品的价格、价值(价格与价值是不同的概念)和能购买的最大数量(买0件到s件均可)。
输出格式
一行:一个数,表示此次购买能获得的最大的价值(注意!不是价格)。
经典多重背包问题
分两个角度思考
状态表示:
(1)集合:从前i个物品中选,总体积不超过j的最大价值
(2)属性:最大
状态计算:
因为有s个物品可以被选择因此状态,可以用01背包扩展得到
优化为一维
#include<iostream>
using namespace std;
const int N = 6010;
int n , m;
int f[N];
int main()
{
cin >> n >> m;
for(int i = 0;i < n;i ++)
{
int v , w , s;
cin >> v >> w >> s;
for(int j = m;j >= v;j --)
for(int h = 0;h <= s && h * v <= j;h ++)
f[j] = max(f[j] , f[j - h * v] + h * w);
}
cout << f[m] << endl;
return 0;
}