Deep Learning
pyxiea
双鸭山大学研究生,对深度学习、自然语言处理、推荐系统感兴趣
展开
-
深度学习中的batch的大小对学习效果有何影响?
推荐阅读:[1] 深度学习中的batch的大小对学习效果有何影响? - 言有三的回答 - 知乎[2] 深度学习中的batch的大小对学习效果有何影响? - 程引的回答 - 知乎[3] batch size 越大,学习率也要越大小结:优点缺点batch_size 较大训练时间减少,收敛更加稳定每个epoch更新次数变小,模型达到相同的精度需要的epoch数量batch_size 较小给梯度下降过程带来更大的随机性,有助于逃离 sharp minimum,使得模型收敛原创 2020-05-13 11:18:23 · 1038 阅读 · 0 评论 -
深度学习优化器Optimizer公式简记
推荐学习资料:[1] 从 SGD 到 Adam —— 深度学习优化算法概览(一)[2] 深度学习——优化器算法Optimizer详解[3] 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam这里仅记录公式,方便对比记忆,而不解释由来,其他细节可以看上面说的资料。设:参数向量为 θ\thetaθ学习率为 η\etaη用于数值稳定的接近0的常数 ϵ\epsilonϵ用于计...原创 2020-03-11 13:22:37 · 1505 阅读 · 0 评论 -
使用class weight和sample weight处理不平衡问题
class weight:对训练集里的每个类别加一个权重。如果该类别的样本数多,那么它的权重就低,反之则权重就高.sample weight:对每个样本加权重,思路和类别权重类似,即样本数多的类别样本权重低,反之样本权重高[1]^{[1]}[1]。PS:sklearn中绝大多数分类算法都有class weight和 sample weight可以使用。PytorchTensorf...原创 2020-03-01 21:25:40 · 19535 阅读 · 4 评论