版权声明:本文为博主原创文章,转载请注明作者和出处。https://blog.csdn.net/xq920831/article/details/82379352
首先接着昨天的内容先写一个装饰器,要求如下:
内含两个函数,分别统计函数的运行时间。
代码如下:
# -*- coding:utf-8 -*-
# Author: Agent Xu
import time
def timmer(func):
def warpper(*args,**kwargs):
start_time = time.time()
func(*args,**kwargs)
end_time = time.time()
print('function-->%s used %s seconds' %(func.__name__,(end_time-start_time)))
return warpper
@timmer #等于 func1 = timmer(func1)
def func1():
time.sleep(2)
print('this is func1')
func1()
@timmer #等于 func2 = timmer(func2)
def func2():
time.sleep(4)
print('this is func2')
func2()
下面根据Alex的视频写一个完整版网页验证装饰器。很强大
# -*- coding:utf-8 -*-
# Author: Agent Xu
username = 'agentxu'
password = 'abc123'
def decor(valid_model):
def auther_valid(func):
def wrapper(*args,**kwargs):
user1 = input('the username is:')
pass1 = input('the password is:')
if valid_model == 'local':
if user1 == username and pass1 == password:
print('\033[32mWelcome!\033[0m') #加颜色
return func(*args,**kwargs)
else:
print('\033[31mInvalid username or password!\033[0m') #加颜色
exit()
elif valid_model == 'ldap':
print('暂时不会。。。。')
else:
print('')
return wrapper
return auther_valid
def index():
print('this is index page')
@decor(valid_model='local')
def home():
print('this is home page')
return 'home page'
@decor(valid_model='ldap')
def bbs():
print('this is bbs page')
index()
home()
bbs()
代码中print的颜色输出可以参考这篇博客:https://blog.csdn.net/qq_34857250/article/details/79673698
迭代器&生成器
生成器
先说一下列表生成式,给一个例子:
list1 = [ i*2 for i in range(10)]
print(list1)
#[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
列表生成式会使得列表很灵活。
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
|
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
generator的取值有两种方式:for循环、next一个个取。
详细的参考https://www.cnblogs.com/alex3714/articles/5765046.html
生成器是只有在调用的时候才会生成相应的数据,只记录当前的位置。python2.0为next(),python3.0为__next__()
上述博文中的这一段很有意思(生成器实现多线程操作:协程):
#_*_coding:utf-8_*_
__author__ = 'Alex Li'
import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield
print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i)
producer("alex")
要注意的是consumer函数执行到yield就会停止,需要__next__()进行下一步,而且需要send函数传送参数。
send和next的区别在于:next只是在调用yield,而send在调用yield的同时还给了它参数。
迭代器
我们已经知道,可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象:
>>>
from
collections
import
Iterable
>>>
isinstance
([], Iterable)
True
>>>
isinstance
({}, Iterable)
True
>>>
isinstance
(
'abc'
, Iterable)
True
>>>
isinstance
((x
for
x
in
range
(
10
)), Iterable)
True
>>>
isinstance
(
100
, Iterable)
False
而生成器不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
*可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
>>>
from
collections
import
Iterator
>>>
isinstance
((x
for
x
in
range
(
10
)), Iterator)
True
>>>
isinstance
([], Iterator)
False
>>>
isinstance
({}, Iterator)
False
>>>
isinstance
(
'abc'
, Iterator)
False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
1 2 3 4 |
|
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的,例如:
1 2 |
|
实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break
今天就到这。。。。。