python实现排序算法四:BFPTR算法

本文介绍了一种名为BFPTR的算法,该算法用于从大量数据中找出最小的K个数值。通过分组和排序各组的中位数来逐步缩小搜索范围,最终找到所需的数值。文中详细解释了算法的实现过程,包括插入排序、分治法等关键步骤。
摘要由CSDN通过智能技术生成

所谓的BFPTR算法就是从n个数中寻找最小的K个数,主要思想可以参考注释,写得不是很好,特别是寻找中位数的中位数的时候,欢迎指正:

##BFPTR排序


##采用任意排序算法,将分组后的数据进行排序
#



__author__ = 'liu'
#coding = utf-8

'''
BFPTR排序

采用任意排序算法,将分组后的数据进行排序
这里采用插入排序算法,比如10个数,则low = 0, high = 10
'''
def insertsort(a, low, high):
	for i in range(low + 1, high):
		j = i
		while j > 0 and a[j] < a[j - 1]:
			a[j], a[j - 1] = a[j - 1], a[j]
			j -= 1
'''
分治法,可参考快速排序,将快速排序里的key值由a[low]变为指定的索引值a[keyIdx]
为了得到将原始数据分为两部分的值对应的索引
'''
def Partion(a, low, high, keyIdx):
	a[low],a[keyIdx] = a[keyIdx],a[low]
	i = low
	j = high
	key = a[low]
	while i < j:
		while a[j] >= key and i < j:
			j -= 1
		if i < j:
			a[i] = a[j]
			i += 1
			while a[i] <= key and i < j:
				i += 1
			if i < j:
				a[j] = a[i]
				j -= 1
	a[i] = key
	return i
'''
根据给定的值,获取该指定值的索引
'''
def findIdx(a, low, high, num):
	for i in range(low,high):
		if a[i] == num:
			return i
	return -1
'''
假设原数组有n个元素,则以5个元素为一组进行分组,最后得到n/5 + 1组
最后一组可能不满5个元素
这里是获取每个分组的中位数
然后对n/5 + 1个中位数再获取中位数
'''
def findMidNum(a, low, high):
	midNum = []
	temp = 0
	if low == high - 1:
		return a[low]
	for i in range(low, high - 5, 5):
		insertsort(a, i, i + 5)
		temp = i
		midNum.append(a[i + 2])
	num = high - temp
	if num > 0:
		insertsort(a, temp, temp + num)
		midNum.append(a[int(num / 2)])
	n = int(high / 5) + 1
	insertsort(midNum, 0, n)
	return midNum[int(n/2)]
def BFPTR(a, low, high, k):
	num = findMidNum(a, low, high)
	keyIdx = findIdx(a, low, high, num)
	i = Partion(a, low, high - 1, keyIdx)
	m = i - low + 1
	if m == k:
		return a[i]
	if m > k:
		return BFPTR(a, low, i - 1, k)
	return BFPTR(a, i + 1, high, k - m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值