BFPRT算法,也叫做中位数的中位数(Median of Medians)算法,是一种线性时间复杂度的算法,用于在无序数组中查找第k小的元素。其时间复杂度为O(n)。
BFPRT算法的核心思想是使用中位数来分割数组,这个中位数不是普通的中位数,而是通过特殊的方式求出的“中位数的中位数”。具体来说,BFPRT算法会将数组划分为若干个大小为5的子数组,然后找出每个子数组的中位数,再通过递归调用自己来找到这些中位数的中位数。这个中位数的中位数可以用于将整个数组分为两部分,然后根据第k小元素在哪一部分来继续查找。
以下是Python实现BFPRT算法的代码:
import random
def bfprt_median(nums, k):
n = len(nums)
if n <= 5:
return sorted(nums)[k-1]
medians = []
for i in range(0, n, 5):
group = nums[i:i+5]
medians.append(bfprt_median(group, (len(group)+1)//2))
pivot = bfprt_median(medians, (len(medians)+1)//2)
left = [x for x in nums if x < pivot]
right = [x for x in nums if x > pivot]
if k <= len(left):
return bfprt_median(left, k)
elif k > len(nums) - len(right):
return bfprt_median(right, k - (len(nums) - len(right)))
else:
return pivot
在这个实现中,bfprt_median 函数接受一个无序数组 nums 和一个整数 k,返回第k小的元素。函数首先检查数组的长度是否小于等于5,如果是,则直接返回排序后的数组的第k个元素。
如果数组长度大于5,则将数组分为若干个大小为5的子数组,并分别求出每个子数组的中位数,这些中位数组成一个新的数组 medians。接着,递归调用自己,求出 medians 数组的中位数 pivot。
使用 pivot 将数组分成左右两部分,分别包含小于和大于 pivot 的元素。如果左部分的元素个数大于等于k,则在左部分查找第k小的元素。如果左部分的元素个数小于k,但右部分的元素个数小于等于k-len(left),则在右部分查找第k-len(left)小的元素。否则,pivot 就是第k小的元素。
以下是一个调用 BFPRT 算法的例子:
arr = [3, 1, 5, 2, 4, 9, 7, 6, 8]
k = 3
result = bfprt_median(arr, k)
print(result)
这个例子会在数组 [3, 1, 5, 2, 4, 9, 7, 6, 8] 中查找第3小的元素,输出结果为 3。