用python实现BFPRT算法

BFPRT算法是一种在无序数组中寻找第k小元素的线性时间复杂度算法。它通过中位数的中位数策略划分数组,将问题规模缩小。Python实现中,先将数组分割成大小为5的子组,计算各子组中位数,然后找到这些中位数的中位数作为pivot,根据pivot将数组分为左右两部分,递归查找目标元素。
摘要由CSDN通过智能技术生成

BFPRT算法,也叫做中位数的中位数(Median of Medians)算法,是一种线性时间复杂度的算法,用于在无序数组中查找第k小的元素。其时间复杂度为O(n)。

BFPRT算法的核心思想是使用中位数来分割数组,这个中位数不是普通的中位数,而是通过特殊的方式求出的“中位数的中位数”。具体来说,BFPRT算法会将数组划分为若干个大小为5的子数组,然后找出每个子数组的中位数,再通过递归调用自己来找到这些中位数的中位数。这个中位数的中位数可以用于将整个数组分为两部分,然后根据第k小元素在哪一部分来继续查找。

以下是Python实现BFPRT算法的代码:

import random

def bfprt_median(nums, k):
    n = len(nums)
    if n <= 5:
        return sorted(nums)[k-1]
    
    medians = []
    for i in range(0, n, 5):
        group = nums[i:i+5]
        medians.append(bfprt_median(group, (len(group)+1)//2))
    
    pivot = bfprt_median(medians, (len(medians)+1)//2)
    left = [x for x in nums if x < pivot]
    right = [x for x in nums if x > pivot]
    
    if k <= len(left):
        return bfprt_median(left, k)
    elif k > len(nums) - len(right):
        return bfprt_median(right, k - (len(nums) - len(right)))
    else:
        return pivot

在这个实现中,bfprt_median 函数接受一个无序数组 nums 和一个整数 k,返回第k小的元素。函数首先检查数组的长度是否小于等于5,如果是,则直接返回排序后的数组的第k个元素。

如果数组长度大于5,则将数组分为若干个大小为5的子数组,并分别求出每个子数组的中位数,这些中位数组成一个新的数组 medians。接着,递归调用自己,求出 medians 数组的中位数 pivot。

使用 pivot 将数组分成左右两部分,分别包含小于和大于 pivot 的元素。如果左部分的元素个数大于等于k,则在左部分查找第k小的元素。如果左部分的元素个数小于k,但右部分的元素个数小于等于k-len(left),则在右部分查找第k-len(left)小的元素。否则,pivot 就是第k小的元素。

以下是一个调用 BFPRT 算法的例子:

arr = [3, 1, 5, 2, 4, 9, 7, 6, 8]
k = 3
result = bfprt_median(arr, k)
print(result)

这个例子会在数组 [3, 1, 5, 2, 4, 9, 7, 6, 8] 中查找第3小的元素,输出结果为 3。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值