“剥皮”法求区域中心

 

“剥皮”法求区域中心

本文作者 徐庆荣(武汉大学)

 在已出版的有关图形图像处理的书刊中,几乎都没有专门论述求区域中心的方法,对区域中心也没有明确的定义,然而它在图像处理和分析中有着独特的作用。本文提出的剥皮法求区域中心虽与图像细化或边缘提取等算法有类似之处,但也有一些重要的差异值得注意。以上情况正是引发本文的缘由。

基本思想

假设:区域是封闭、连通的平面,无空洞,且是可塑的,若在保持区域连通条件下,由区域边缘各处同时向里均匀“挤压”,使区域逐渐变小直至剩下最后一点,则将此点当作该区域的中心。显然,按此得到的中心点一定位于区域内部,这也是我们所期望的。

剥皮法是基于上述假设并是对“挤压”过程的模拟。

剥皮法一般分有:边缘跟踪剥皮法,四向剥皮法,八向剥皮法三种。边缘跟踪剥皮法是对图像反复进行边缘跟踪(顺时针或逆时针向)并“剥”去边缘像元的过程。后二种方法基于行列扫描,依次在各方向上轮流“剥”去边缘像元。当面积复杂且较大时,各种方法的结果可能有少许差别。

各种剥皮法均采用栅格(光栅)数据处理算法,它与线状要素的图像细化(亦称中轴化)算法类似。

此外,重心法(取区域全部像元坐标的平均值作为该区域的中心)也是区域求中法之一,但当区域轮廓成凹形时,得到的中心有可能位于区域外。本文给出的剥皮法则可克服这一弊端。

剥皮法区域求中与图像细化算法的区别

1.在线状要素图像细化算法中,须保留轴线的“线端”,而区域求中算法无此必要。

2.图像细化的初步结果可能是呈树枝状的多条线段构成的“骨架”,须进一步对其处理,即通过“削枝”(又称去“毛刺”)保留“主干”(中轴线)。而在区域求中算法中,由于并不考虑保留“线端”,故不会形成“骨架”,最后剥剩的仅有一点(作为区域中心)。

区域求中亦可借助于图像细化程序

借用图像细化程序而不另编专门的区域求中程序,也是一种选择。

首先利用细化程序获得“骨架”(它反映区域的分布)。然后,采用轮流从各线端向线段中部“侵蚀”的方法, 使最后仅剩下一点作为区域的中心。整个过程实际上是:先图像骨架化,再对骨架“侵蚀”取中。

剥皮法的基本规则

1由表及里  必须从边缘剥起(通过对图像边缘跟踪或行列扫描寻找边缘像元),每次只剥去一个像元。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 图灵所说的“剥洋葱皮”的方是指,解决一个问题时,应该先将问题分解成若干个规模较小的子问题,然后逐一解决这些子问题。这种方类似于剥洋葱的过程,因为洋葱的外皮是分层的,可以逐层剥开。这种方通常被称为分治。 ### 回答2: 图灵所说的“剥洋葱皮”的方是一种解决问题的思维方式。他认为,当面对一个复杂的问题时,可以将它看作是一个多层次的问题,就像剥洋葱一样,一层一层地解决。 首先,我们需要将问题分解成多个子问题。这样可以让问题变得更加简单明了,便于分析和解决。就像剥掉洋葱的外层一样,我们首先要找到最外层的问题。 接下来,我们逐个解决这些子问题。图灵认为,解决问题的关键是找到适当的方和技巧。就像剥洋葱一样,我们需要找到剥离每一层的最佳方式。这可能需要我们进行试错,使用不同的方工具,直到找到最适合的解决方案。 最后,我们要将所有子问题的解决方案整合在一起,得出最终的答案。这就像将剥离的洋葱层层叠加在一起,形成一个完整的洋葱。通过将每个子问题的解决方案相互关联,我们可以建立起一个全面而完善的解决方案。 图灵的“剥洋葱皮”的方强调了问题解决的系统性和层次性。它提醒我们,在面对棘手的问题时,不要一味地追求简单快速的解决,而是应该用更加深入和全面的方式来思考。只有通过逐层分析和解决,才能找到最符合实际情况的解决方案。 ### 回答3: 图灵所说的“剥洋葱皮”的方是一种在解决问题时逐层深入的途径。就像剥洋葱一样,我们需要逐层剥去表面的皮,去发现和理解问题的核心和更深层次的本质。 这种方的关键是将复杂的问题分解为更小的部分,并逐步分析每个部分。每一层都像是一个迷宫,需要我们仔细探索和理解,以便找到问题的答案。 剥洋葱皮的方有助于我们理清思路,使复杂的问题变得简单明了。通过逐层剥离,我们可以发现隐藏在问题内部的一些因素、关系和规律。这种逐层剥洋葱皮的思维方式帮助我们更好地组织和分析信息,找到解决问题的途径和策略。 同样,这种方也适用于学习新的知识和技能。我们可以逐步理解和掌握基础概念,再逐渐拓展到更深层次的知识。通过不断学习和探索,我们可以迅速提高自己的能力,并更好地理解复杂的问题和挑战。 总之,图灵所说的“剥洋葱皮”的方是一种层层深入的思维方式,通过分解问题和逐步分析来寻找解决问题的答案。无论是解决问题还是学习掌握新知识,这种方都能帮助我们更好地理清思路,提高分析问题的能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值