最精简:windows环境安装tensorflow-gpu-2.10.1

文章详细介绍了如何在本地Windows系统上安装Tensorflow2.10.1GPU版本,包括通过.whl文件安装,创建Anaconda虚拟环境,安装CUDA和CUDNN,以及测试GPU是否可用。从2.11版本开始,Tensorflow在Windows上不再支持GPU,需使用WLS2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 通过.whl文件方式安装

.whl文件的下载地址:
tensorflow-gpu: http://mirrors.aliyun.com/pypi/simple/tensorflow-gpu/
tensorflow-cpu: https://pypi.org/project/tensorflow/#files

下载: tensorflow_gpu-2.10.1-cp310-cp310-win_amd64.whl

Note: 从2.11版本开始,需要在windows WLS2(适用于 Linux 的 Windows 子系统)上安装才能使用GPU。所以要在native-windows上使用GPU,就只能安装2.10.0版本及以下的版本,或者安装老版的tensorflow-gpu。
windows native: link, 将官网的语言调到 英文 模式才能看到
在这里插入图片描述

2.创建anaconda虚拟环境

(一)创建环境

conda create -n tf2.10 python=3.10

(二)激活 tf2 环境

conda activate tf2.10

(三)通过 pip 安装下载的 tensorflow_gpu-2.10.1-cp310-cp310-win_amd64.whl

pip install your-path/tensorflow_gpu-2.10.1-cp310-cp310-win_amd64.whl

在这里插入图片描述

tensorflow 2.10.1安装完毕, 并且安装了对应的:keras-2.10.0
在这里插入图片描述

3.安装对应的cuda与cudnn版本,local不必装cuda和cudnn

conda install cudatoolkit cudnn

Note: 可以为cudatoolkit cudnn指定版本,eg:cudatoolkit=11.3 cudnn=8.3
.在这里插入图片描述

4. 测试tensorflow gpu是否可用

import tensorflow as tf
tf.__version__

tf.test.is_gpu_available()
tf.config.list_physical_devices('GPU')

在这里插入图片描述
至此,tensorflow-gpu 2.10.1 安装成功,愉快的玩耍吧。

.
Reference:
解决CUDA 11.6版本对应的tensorflow-gpu版本问题
2023年最新Windows安装GPU版本的tensorflow(含bug记录及解决)
Tensorflow找不到GPU:tensorflow 2.11.0版本开始,在windows上不再支持GPU
Windows 11 安装 WSL2
Windows10/11 三步安装wsl2 Ubuntu20.04(任意盘)

回答:tensorflow-gpu 2.10版本中,keras已经被整合到tensorflow中,不再作为独立的库存在。因此,在导入tensorflow时,可以直接使用tensorflow.keras模块来使用keras相关功能。\[2\] 你可以通过以下代码来测试tensorflow-gpu是否可用并查看GPU设备列表: ``` import tensorflow as tf print(tf.__version__) print(tf.test.is_gpu_available()) print(tf.config.list_physical_devices('GPU')) ``` 这段代码会输出tensorflow的版本号,以及一个布尔值表示GPU是否可用,以及GPU设备列表。如果输出中显示GPU可用,并且列表中有GPU设备,则说明tensorflow-gpu已经成功安装并可用。 #### 引用[.reference_title] - *1* *3* [精简windows环境安装tensorflow-gpu-2.10.1](https://blog.csdn.net/xrinosvip/article/details/130308369)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [tensorflow-gpu下载(CUDA,cudnn)与使用时GPU情况查看](https://blog.csdn.net/weixin_45747396/article/details/121598615)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值