Windows10 安装Tensorflow-gpu 2.10.0
1. GPU 版本选择
TensorFlow 2.10.0 是 Windows 本地支持 GPU 的最后一个版本。从 2.11.0 开始,Windows 系统需通过 WSL2 才能使用 GPU 。
GPU 和 CPU 版本在 2.x 中已合并,安装 tensorflow==2.10.0 后,若环境配置正确,会自动启用 GPU 。
2. CUDA 和 cuDNN 版本
推荐 CUDA 11.2.2 + cuDNN 8.1.1
,具体需根据硬件和驱动选择:
1)下载 CUDA 11.2.2
cuda-toolkit 11.2.2(https://developer.nvidia.com/cuda-toolkit-archive)
cuda安装完之后,直接在cmd中查看
nvcc -V
2)下载cudnn 8.1.1
cudnn 8.1.1(https://developer.nvidia.com/rdp/cudnn-archive)
把下载的cudnn 8.1.1压缩包解压,并复制至 CUDA 11.2文件夹下。
避免使用 CUDA 12.x。证据表明,即使安装 CUDA 12.3,TensorFlow 2.10.0 仍需依赖 CUDA 11.x 的底层库,可能导致兼容性问题 。
3. 安装步骤
1)创建虚拟环境(推荐使用 Conda):
conda create -n tf python=3.10
conda activate tf
2)安装 TensorFlow 2.10.0(使用清华镜像加速):
pip install tensorflow==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
3)安装TensorFlow-gpu 2.10.0(使用清华镜像加速):
pip install tensorflow-gpu==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
4)验证 GPU 可用性:
import tensorflow as tf
print("TensorFlow version:",tf.__version__)
print("Available devices:",tf.config.experimental.list_physical_devices())
print("Num GPUs Available",tf.config.experimental.list_physical_devices('GPU'))
4. 常见问题
numpy 版本冲突
:若报错 TypeError: Unable to convert function return value…,需降级 numpy 至 1.23.5 :
pip uninstall numpy
pip install numpy==1.23.5 -i https://pypi.tuna.tsinghua.edu.cn/simple
CUDA/cuDNN 路径配置:确保系统环境变量包含 CUDA 和 cuDNN 的安装路径(如 CUDA_PATH_V11_6 和 CUDNN_HOME)。
5. 其他注意事项
Windows 系统限制:若使用更高版本 TensorFlow(如 2.12.0),需通过 WSL2 安装 。
Python 版本兼容性:TensorFlow 2.10.0 支持 Python 3.7-3.10,建议使用 3.9 或 3.10 。
综上,TensorFlow 2.10.0 版本 和 GPU 版本推荐搭配 Python 3.10+CUDA 11.2 + cuDNN 8.1.1,并注意环境变量与依赖库的版本匹配。