5_2_CNN_MNIST.py

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()


def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)
  
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')  
                        
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1,28,28,1])
                        
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.global_variables_initializer().run()
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 附件中的脚本和训练数据提供了一个基于PyTorch的手写数字识别模型的实现。该模型使用一个卷积神经网络(Convolutional Neural Network,CNN)来进行训练和预测。 首先,pytorch_mnist.py是一个Python脚本,包含了模型的网络结构、损失函数、优化器以及训练、验证和测试的流程。它通过加载mnist.npz中的数据集,对模型进行训练,并评估其在测试集上的性能。 mnist.npz是一个Numpy数组文件,其中包含了手写数字MNIST数据集。MNIST数据集是一个常用的机器学习数据集,包含了60000个用于训练的手写数字图像和10000个用于测试的手写数字图像。每个图像都是28x28像素大小的灰度图像,表示了0到9之间的一个数字。mnist.npz文件将数据集分为了训练集、验证集和测试集,并存储为Numpy数组的形式。 脚本pytorch_mnist.py使用了PyTorch框架来定义了一个具有两个卷积层和三个全连接层的CNN模型。训练过程中,脚本使用了随机梯度下降(Stochastic Gradient Descent,SGD)算法来优化模型的权重参数,并使用交叉熵损失函数来度量模型的性能。脚本还实现了训练集上的批次循环、验证集上的性能评估和在测试集上的预测。 下载并运行这些脚本和数据,你将能够训练一个基于CNN的手写数字识别模型,并使用该模型对新的手写数字图像进行识别。这个模型可以作为一个简单但有效的数字识别工具,有助于学习和理解深度学习和计算机视觉领域的相关概念和技术。 ### 回答2: 附件提供了两个文件,分别是脚本文件pytorch_mnist.py和训练数据文件mnist.npz。 脚本文件pytorch_mnist.py是使用PyTorch框架编写的一个用于识别手写数字的神经网络模型。它通过卷积神经网络的方法对输入的手写数字图像进行分析和识别。脚本首先加载训练数据,然后定义了一个包含卷积层、池化层和全连接层的神经网络模型。接着使用随机梯度下降算法对模型进行训练,并实现了损失函数和优化器。最后,在一定的迭代次数下,保存了训练好的模型,在测试集上进行准确率的评估。 训练数据文件mnist.npz包含了用于训练和测试的手写数字图像数据集,其中包括了60,000个训练样本和10,000个测试样本。这些图像数据已经被处理成灰度图像,并存储在一个numpy数组中。可以通过读取这些数据,并分为训练集和测试集,用于模型的训练和评估。 总结起来,这个附件提供了一个使用PyTorch框架编写的手写数字识别模型的实现脚本以及相应的训练数据。通过使用这些资源,我们可以训练一个卷积神经网络模型来对手写数字图像进行识别,并通过测试数据评估该模型的准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值