题目描述:
斐波那契数,通常用 F(n)
表示,形成的序列称为斐波那契数列。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
给定 N
,计算 F(N)
。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1.
示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2.
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3.
提示:
- 0 ≤
N
≤ 30
解题思路:
1、常规解法,直接递归调用实现
2、改进解法,递归调用方法每一步都需要去计算,很浪费时间,可以提前将每一步的计算结果存下来,后面需要直接取用即可。
代码实现:
class Solution {
public int fib(int N) {
if(N==0)
return 0;
if(N==1)
return 1;
return fib(N-1)+fib(N-2);
}
}
class Solution {
public int fib(int N) {
List fabList = new ArrayList<Integer>();
if(N==0){
return 0;
}else if (N==1){
return 1;
}else {
fabList.add(0);
fabList.add(1);
for(int i=2;i<=N;i++){
fabList.add((int)fabList.get(i-2) + (int)fabList.get(i-1));
}
return (int)fabList.get(N);
}
}
}
新增一种解法,只存储前两个值,占用更少的空间
public class Solution {
public int Fibonacci(int n) {
if(n==0){
return 0;
}else if(n==1){
return 1;
}else{
int temp1=0;
int temp2=1;
int temp3=0;
for(int i=2;i<=n;i++){
temp3=temp1+temp2;
temp1=temp2;
temp2=temp3;
}
return temp3;
}
}
}