整数的分划问题。
如,对于正整数n=6,可以分划为:
6
5+1
4+2,4+1+1
3+3,3+2+1,3+1+1+1
2+2+2,2+2+1+1,2+1+1+1+1
1+1+1+1+1+1
现在的问题是,对于给定的正整数n,编写算法打印所有划分。
用户从键盘输入n(范围1~10)
程序输出该整数得所有划分。
解题思路:
从n到1进行循环,将n分解,分解得到的数中的最大的数是当前的循环变量,然后在分解得到的数中从后往前依次将大于1的数进行分解,为便于实现这一过程我们将分解完的数存放到链表中。
实现方法:
将将要被分解的数存放到链表第一个结点的位置,然后将其分解,将分解得到的数再存入到链表中,然后在从后往前遍历分解得到的数,依次对大于1的数调用分解函数进行分解。每分解一次便输出一次。
程序代码:
#include<iostream> #define NULL 0 using namespace std; typedef struct Mynum{ int x; struct Mynum *next; }num,*nump; nump head; nump s(nump pot,int i); void fun(nump px); int main() { int n; cout<<"please input a integer(1~10):"<<endl; cin>>n; cout<<endl<<"现在开始分解:"<<endl; for(int j = n;j > 0;--j) { nump t = new (num); t->next = NULL; t->x = n; //调用是s()函数将n分解成最大值为j的几个数的和的形式 head = s(t,j); //输出第一次分解后的结果 nump pt = head; while(pt != NULL) { if(pt->next) cout<<pt->x<<"+"; else cout<<pt->x; pt = pt->next; } //调用fun()函数对第一个数以后的数进行分解 fun(head->next); cout<<endl; } return 0; } //将pot的x域中的数分解成最大值为i的n个数的和,并连接到链表中的原来位置 nump s(nump pot,int i) { nump q,p,temp; p = pot; q = pot; temp = p->next; int a = p->x - i; p->x = i; while(a >= 1) { q = new(num); if(a > i) { a = a - i; q->x = i; } else { q->x = a; a = 0; } q->next = NULL; p->next = q; p = q; } q->next = temp; return pot; } //使用该函数对链表中除第一个以外的所有大于1的数调用是s()函数,自后向前进行分解 void fun(nump px) { if(px == NULL) return; nump q,p; q = px; fun(q->next); if(q->x > 1 && (q->next == NULL || q->next->x == 1)) { for(int k = q->x - 1;k > 0;--k) { q = s(q,k); //每分解一次就将分解后的结果输出 cout<<","; p = head; while(p != NULL) { if(p->next) cout<<p->x<<"+"; else cout<<p->x; p = p->next; } } //对刚得到的结点中的数进行分解 fun(q); } }
运行结果:
please input a integer(1~10): 10 现在开始分解: 10 9+1 8+2,8+1+1 7+3,7+2+1,7+1+1+1 6+4,6+3+1,6+2+1+1,6+1+1+1+1 5+5,5+4+1,5+3+1+1,5+2+1+1+1,5+1+1+1+1+1 4+4+2,4+4+1+1,4+3+1+1+1,4+2+1+1+1+1,4+1+1+1+1+1+1 3+3+3+1,3+3+2+1+1,3+3+1+1+1+1,3+2+1+1+1+1+1,3+1+1+1+1+1+1+1 2+2+2+2+2,2+2+2+2+1+1,2+2+2+1+1+1+1,2+2+1+1+1+1+1+1,2+1+1+1+1+1+1+1+1 1+1+1+1+1+1+1+1+1+1