递归求解整数的分划问题

173 篇文章 3 订阅
56 篇文章 0 订阅

整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都涉及到。

    所谓整数划分,是指把一个正整数n写成如下形式:

    n=m1+m2+m3+....+mi;(其中mi为正整数,并且1<=mi<=n),则{m1,m2,m3,....,mi}为n的一个划分。

    如果{m1,m2,m3,....,mi}中的最大值不超过m,即max{m1,m2,m3,....,mi} <= m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);

    例如当n=4时,它有5个划分:{4}、{3,1}、{2,2}、{2,1,1}、{1,1,1,1};

    注意:4=1+3和4=3+1被认为是同一个划分。


如,对于正整数n=6,可以分划为:

6

5+1

4+2,4+1+1

3+3,3+2+1,3+1+1+1

2+2+2,2+2+1+1,2+1+1+1+1

1+1+1+1+1+1

现在的问题是,对于给定的正整数n,编写算法打印所有划分。


编程思想:简单递归。


CODE:

#include<stdio.h>
#include<iostream>
#include<cstring>
#include<math.h>
#include<algorithm>
using namespace std;
void f(int n,int a[],int k)
{
	if(n<=0)
	{
		printf("%d",a[0]);
		for(int i=1;i<k;i++)
		{
			printf("+%d",a[i]);
		}
		puts("");
	}
	for(int i=n;i>0;i--)
	{
		if(k>0&&i>a[k-1]) continue;
		a[k]=i;
		f(n-i,a,k+1);
	}
}
int main()
{
	int n;
	int a[1000];
	while(scanf("%d",&n)!=EOF)
	{
		f(n,a,0);
	}
	return 0;
 } 




  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林下的码路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值