HDU 4807 Lunch Time(费用流)

传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4807
题意:告诉你一些单向边,问你k个人最快能多久从0点到达n-1点。
思路:这题可以看出是费用流,但是费用流只能求出最大流和最小费用,而且是包括所有增广路的。但是实际上,每条路每秒钟都可以进入一批人,所以在一些情况下,可以考虑等待一段时间走短的路,而不是每条路都直接进入。所以我们在费用流中每次增广求出的增广路就有用了,因为每次求出的增广路的时间都是递增的,所以我们可以枚举一下,求出只使用当前求出的这些路最多能走多少人,并且只使用当前的路还需要多久能走完所有的人。枚举一遍所有路,就可以求出答案。

当前最多能走的人:(当前时间-上一条路的时间)*之前走过的所有人+当前这条路能走的人。(因为每一秒,前面的所有路都可以进入一批人,所以两条路的时间差可以走过一批人,而且当前这条路也可以走过一批人。)
剩余人数还需多久:当前时间+剩余人数/现在每秒能走的人数(向上取整)
对于求出的每条增广路都这样枚举一下,取最小时间,就可以求出答案。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
#define pb push_back
#define mp make_pair
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define calm (l+r)>>1
const int INF=2139062143;

const int maxn=2510;
const int maxm=5010;
struct EE{
    int from,to,cap,cost;
    EE(){}
    EE(int f,int t,int cap,int cost):from(f),to(t),cap(cap),cost(cost){}
}edge[4*maxm];
int n,m,k,st,ed,ff,nowf,ans,Ecnt,d[maxn],flow[maxn],pre[maxn];
bool vis[maxn];
vector<vector<int> >G;
void init(){
    st=0;ed=n-1;Ecnt=0;ff=0;ans=0;
    G.clear();G.resize(n);
}
inline void add(int from,int to,int cap,int cost){
    G[from].pb(Ecnt);
    edge[Ecnt++]=EE(from,to,cap,cost);
    G[to].pb(Ecnt);
    edge[Ecnt++]=EE(to,from,0,-cost);
}
bool spfa(){
    memset(vis,false,sizeof vis);
    fill(d,d+n+1,INF);
    queue<int> Q;Q.push(st);
    vis[st]=true;d[st]=0;pre[st]=-1;flow[st]=INF;
    while(!Q.empty()){
        int s=Q.front();Q.pop();
        vis[s]=false;
        for(int i=0;i<(int)G[s].size();i++){
            EE e=edge[G[s][i]];
            if(e.cap>0&&d[e.to]>d[s]+e.cost){
                d[e.to]=d[s]+e.cost;
                pre[e.to]=G[s][i];
                flow[e.to]=min(flow[s],e.cap);
                if(flow[e.to]==0)break;
                if(!vis[e.to]){vis[e.to]=true;Q.push(e.to);}
            }
        }
    }
    if(d[ed]==INF)return false;
    ff=flow[ed];ans=d[ed];
    //printf("%d %d\n",flow[ed],d[ed]);
    int now=ed;
    while(now!=st){
        now=pre[now];
        edge[now].cap-=flow[ed];
        edge[now^1].cap+=flow[ed];
        now=edge[now].from;
    }
    return true;
}
void MFMC(){
    int cnt=k,pref=0,pred=0,pr=INF;
    while(spfa()){
        cnt-=(ans-pred)*pref+ff;
        pref+=ff;pred=ans;
        int now=ans+ceil(max(cnt,0)/(1.0*pref));
        pr=min(pr,now);
        if(cnt<=0){
            break;
        }
    }
    if(pr!=INF)printf("%d\n",pr);
    else printf("No solution\n");
}
int main(){
    //freopen("D://input.txt","r",stdin);
    while(scanf("%d%d%d",&n,&m,&k)!=EOF){
        init();
        for(int i=0;i<m;i++){
            int a,b,c;scanf("%d%d%d",&a,&b,&c);
            add(a,b,c,1);
        }
        if(k==0){
            printf("0\n");
            continue;
        }
        MFMC();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值