2018.03.23-TG

7 篇文章 0 订阅
6 篇文章 0 订阅

A. 「NOIP2017模拟赛10.02」电阻
个人认为是思维题。

第一题其实很简单,而且很有意思。
对于每个电阻我们不是串联进去,就是并联进去。
如果 a>b a > b ,那么我们肯定是串联进去比较好,所需达到的阻值 ab a b 变成了 abb a − b b ,如果发现 a<b a < b ,那么我们只能选择并联,我们知道 1R=1R1+1R2+1R3+...+1Rk 1 R = 1 R 1 + 1 R 2 + 1 R 3 + . . . + 1 R k ,所以所需达到的阻值 ab a b 变成 aba a b − a

由于 a 和 b 的值比较大,我们每次都可以用除法直接求出需要串入或并入多少个电阻。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
LL ans,a,b;
LL read()
{
    LL ret=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
    return ret*f;
}
int main()
{
    a=read(),b=read();
    while (a&&b)
    {
        if (a>b) ans+=a/b,a%=b;
        else ans+=b/a,b%=a;
    }
    printf("%lld",ans);
    return 0;
}

B. 「NOIP2017模拟赛10.02」找零
第二题是贪心。

如果 a1 a 1 (第一个)不是1(从小到大),那么肯定不能组合出 1 1 ~x。否则一定可以组合出来。
1 1 ~a2 必须用 a1 a 1 来组合,同理,后面的每一个 ai a i 最好 都直接通过 ai1 a i − 1 来组合。然而组合最好刚好组合出 ai1 a i − 1 ,因为之后用 ai a i 去组合 ai+1 a i + 1 时,会把 ai a i 本身组合出来。但是很可能不能刚好把它组合出来,那么我们就少组合出一点,我们必须多组合出一点以保证所有数字都能组合出。
然而这样也不全对例如:1 2 3 4 5 6 7 8,x=10
如果完全按照上述策略,那么这样的数据会多选,因为我们当前选择的若干数字和 sum s u m 已经大于 ai a i ,那么 ai a i 肯定已经被组合出来了,不需要另花 ai1 a i − 1 来组合了。所以组合 ai a i 的时候,我们只需另花若干个 ai1 a i − 1 组合出 aisum1 a i − s u m − 1 就好了。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
const int maxn=1e6+5;
int n;
LL x,a[maxn],ans,lst=0,s;
LL read()
{
    LL ret=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
    return ret*f;
}
int main()
{
    x=read();n=read();
    for (int i=1;i<=n;i++) a[i]=read();
    a[++n]=x;
    sort(a+1,a+n+1);
    if (a[1]!=1) {printf("-1");return 0;}
    for (int i=2;i<=n;i++)
    {
        if (a[i]>x) break;
        if (lst>=a[i]) continue;
        s=(a[i]-lst+a[i-1]-2)/a[i-1];ans+=s;lst+=a[i-1]*s;
    }
    if (lst<x) ans++;
    printf("%lld",ans);
    return 0;
}

「NOIP2017模拟赛10.02」2048
排列组合+01背包

这题也算是水题,通过基本的方法也是可以解决的。
首先,很容易看出来,只有 2kk12 2 k 其 中 k ≤ 12 的数字可以组合出2048,所以我们对于其它的数字可以随便取,总共有 2nx 2 n − x 种(我们假设有 x 个 2k 2 k 数)。
接着就是想办法求 2k 2 k 数组合出 2048 2048 的方案,但是我们发现直接求不太好求,所以,我们可以反过来,先求不符合的和总方案数,再作差。
所以我们可以用01背包刷出其它每种情况的方案数(即组合出非2048的方案数),用 fi f i 表示。
最后答案为 2nx×(2mni=0fi)mod 2 n − x × ( 2 m − ∑ i = 0 n f i ) m o d
注意, f0 f 0 不能漏掉,这时表示一个都不取。

代码

#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std;
const int maxn=1e5+5,maxa=2048+5,MA=2048,T=998244353;
int n,ai,x;
LL f[maxa],sum;
LL qsm(LL a,LL b)
{
    LL s=1;a%=T;
    for (;b;b>>=1,a=a*a%T)if (b&1) s=s*a%T;
    return s;
}
int main()
{
    scanf("%d",&n);f[0]=1;
    for (int i=1;i<=n;i++)
    {
        scanf("%d",&ai);
        if (ai^(ai&-ai)) continue;
        LL *A=f+MA,*B=f+(MA-ai);
        for (int i=MA-ai;B>=f;i--,A--,B--) *A=(*A+*B)%T;
        x++;
    }
    for (int i=0;i<MA;i++) sum+=f[i];sum%=T;
    printf("%lld",qsm(2,n-x)%T*((qsm(2,x)-sum+T)%T)%T);
    return 0;
}
weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值