pandas利用数据类型转换节省内存空间

本文探讨了如何使用pandas的astype方法进行数据类型转换以节省内存,特别是对于数值型和类别型数据。通过自适应转换找到最合适的列数据类型,并提醒在数值型转换后可能遇到的计算结果溢出问题,以及类别型转换后处理缺失值的注意事项。
摘要由CSDN通过智能技术生成

pandas利用数据类型的转换(astype)节省内存空间

数据类型转换函数astype

df1 = pd.DataFrame({
   'a':[1,2,3,np.inf],'b':[12,321,23,np.nan]})
>>>
     a      b
0  1.0   12.0
1  2.0  321.0
2  3.0   23.0
3  0.0    NaN

#获取数据类型
df1.dtypes
>>>
a    float64
b    float64
dtype: object

#获取dataframe的大小(单位字节)
df1.memory_usage()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值