主成分析(PCA,待完善)

第23章 降维算法:PCA主成分分析

概述

无监督
方差

在这里插入图片描述

计算流程与实例

  • 数据
    5个数据,2个特征
    在这里插入图片描述

向量表示

在这里插入图片描述

基变换

在这里插入图片描述

基变换

在这里插入图片描述

变换解释

在这里插入图片描述

基变换

p i p_i pi:基向量
a i a_i ai : 向量
在这里插入图片描述

找到合适的基

方差越大,越来越分散
协方差: a,b特征之间的关系,范围【-1,+1】。
+1 表示两个特征之间的投影相似度很高,
-1 则投影相似度非常低

0中心化,在这里插入图片描述

协方差

在这里插入图片描述

  • 10维度降到2维度
    10维度数据,降为为2维度。
    用方差最大,那么2个维度的数据方向是相近的
    x,y 的协方差非常接近 +1
    在这里插入图片描述

  • 10维度降到4维度
    仍然使用方差最大,结果仍然是数据的
    在这里插入图片描述

使用方差最大,不管是降到几维度,那么所有的降维结果,在第一个方差A最大的出现后,剩下的会尽可能的去接近A,表现为在方差A的方向上的投影最大

  • 协方差
    0 的时候,两个维度是互相垂直,相互独立

在这里插入图片描述
i: 样本
j,k: 第 j, k 个特征

PCA 求解

优化目标

在这里插入图片描述
方差尽可能大
协方差为0

  • 协方差
    在这里插入图片描述

  • 方差
    在这里插入图片描述

对角化

非对角线位置的值,化成 0
在这里插入图片描述
越大的,权值越高

对角化化简

在这里插入图片描述

如,算出 N 个特征向量,然后,进行排序,取前面的K个重要的特征,便实现降维。
在这里插入图片描述

PCA 计算实例

在这里插入图片描述

  • 数据
    5个数据,2个特征

在这里插入图片描述

  • 特征值与特征向量
    这个是关于协方差矩阵 的特征值与特征向量

降成一维度
计算出特征值后,选择特征值大的那个对应的特征向量,然后用它进行单位化,之后降维

在这里插入图片描述

  • 对角化
    性质

与LDA

更LDA类似。
但是PCA通过方差与协方差,而LDA是通过类别

代码实例

归一化,标准化,正太分布处理。

疑问

  • 降维实例中,各个步骤的意义??
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值