- 博客(28)
- 资源 (4)
- 收藏
- 关注
原创 pytorch:YOLOV1的pytorch实现
平方误差和损失将大边界框和小边界框的误差认为是同等程度的误差,而实际情况是相同的偏移误差对于小边界框影响更大。如下图,黑框是GT边界框,红框是预测边界框,小红框和大红框相对各自的GT边界框的坐标偏移是相同的,从视觉上来看相同的偏移对于小框影响更大。Yolo每个网格生成多个框,但是只采用于GT边界框IOU最大的边界框作为预测器,这种操作使得边界框有了分化,使得边界框在预测特定大小、宽高比、类别时更加准确。,S是超参数可以设置不同的值,原论文设置为7,也就是将输入图像分成了7x7个(64x64)的小网格。
2023-12-09 17:18:37 1775
原创 【水】pytorch:torch.reshape和torch.Tensor.view的区别
torch.reshape可能会返回一个从原张量复制而来的新张量,torch.Tensor.view会直接操作内存中的张量,只有torch.reshape满足torch.Tensor.view的条件时才会跟view一样直接操作内存中的张量。1、使用torch.Tensor.view得到的。2、torch.Tensor.view只有在。,如果原张量的值变换那么新张量也会变化。张量与原张量共享内存。
2023-12-05 16:33:18 627
原创 pytorch:R-CNN的pytorch实现
作者说,使用了Softmax反而造成了性能的下降,他们推断可能是因为正负样本的划分不同导致的(SVM正样本只有真实边界框,负样本要求IoU小于0.3与真实边界框)。做上一点说明,R-CNN使用的分类器是SVM,原文将AlexNet最后一层去掉只用网络提取了4096维的向量然后使用已经训练好的SVM进行分类,本篇的实现则直接用了Softmax做分类,相当于没有改变网络结构。R-CNN可以说是使用CNN进行目标检测任务的始祖,而且取得了不错的成绩。对后续的算法,例如现在经常使用的Yolo系列有很大的影响。
2023-10-30 19:36:13 332
原创 Pytorch:cat、stack、squeeze、unsqueeze的用法
在指定上链接传入的张量,所有传入的张量都必须是相同形状tensor:相同形状的tensordim:链接张量的维度,不能超过传入张量的维度。
2023-10-17 17:06:34 872
原创 单片机:STM32F4x HAL库软硬SPI驱动ST7735s 1.8寸LCD屏幕
基于STM32F4x平台HAL库的软硬SPi驱动1.8寸st7735sTFT-LCD屏幕
2023-01-13 19:53:43 4707 8
原创 Ubuntu:Ubuntu18忘记密码的解决方式
Ubuntu:Ubuntu18忘记密码的解决方式一、问题描述忘记Ubuntu的用户密码导致系统无法登录(root密码已知)二、解决方法注:以下操作为虚拟机操作,没有采集卡所以无法采集屏幕图像,但虚拟机与实际系统操作相同。进入GRUB ----> 进入Recovery mode ----> 通过root修改密码 ---->重启用新密码登录1、进入GRUB。在系统开机的时候狂按"esc"或者"shift"进入GRUB2、选择ubuntu高级选项,进入Recovery mode
2021-11-30 22:15:32 2725
原创 NN:最小二乘法与梯度下降法的Python实现
NN:最小二乘法与梯度下降法的Python实现说明:仅为个人学习笔记,请适量参考。代码是参考其他博主修改而来,因为忘记收藏了所以不放连接了。最小二乘法# least square error 最小二乘法# 理论上最小二乘法可以拟合任何函数# 使用不同的拟合方法可以拟合不同的函数类型,采用了线性回归的方法拟合了一条曲线class least_square_error(): def __init__(self, n): self.w = 0 self.b =
2021-09-19 09:01:32 354
原创 NN:神经网络学习,常见激活和损失函数的Python实现
NN:神经网络学习,常见激活和损失函数的Python实现激活函数1、sigmoid# sigmoid# sigmoid输出总是大于零,因此前一层对后一层的神经元输入也总是大于零出现了漂移def sigmoid(x): # exp()自然常数e的x次方 y = 1 / (1 + math.exp(-x)) return y# 生成随机数集# 生成高斯(正太)分布的随机数,loc:中心点# scl:高度#
2021-08-25 01:03:17 587
原创 Keras: AlexNet代码分享
Keras: AlexNet代码分享from keras.models import Sequentialfrom keras.layers import Convolution2D, MaxPool2D, Flatten, Dense, Dropoutfrom keras.layers.normalization import BatchNormalizationfrom keras.models import load_modelfrom keras.preprocessing.image i
2021-06-13 00:09:25 202
原创 Rasberry Pi:树莓派3B python脚本开机自启
Rasberry Pi:树莓派3B python脚本开机自启参考:树莓派4b将程序加入开机启动虽然这个是4B的教程,但是适用于3B。写下注意的问题:1、xxx.desktop桌面文件的文件名必须和要自启的脚本文件名相同,否则不能正常启动。2、Name=base Comment=base 这两项虽然可以自拟,但是也必须和脚本文件名相同。3、在保存xxx.desktop文件后不会自动生成快捷方式。4、自启脚本必须放在桌面,无论是否开启图形界面。可以在控制台输入 ps x 查看自启脚本是否在运行
2021-04-09 22:51:39 198
原创 单片机:各类模块数据手册及其资源
单片机:各类模块数据手册及其资源说明:收集了平时遇到用到的模块的一些资源,分享下。1、NB-IOT模块BC26链接:https://pan.baidu.com/s/1c5jzDDynK9gBgmWy7FPbEg提取码:dn5s2、GPS模块 NEO-6M链接:https://pan.baidu.com/s/178yCevUENaEgQpTsD2G-9A提取码:epmj3、蓝牙模块 BT06链接:https://pan.baidu.com/s/1SavmVmCbHMpRKcPTBn6vSQ
2021-04-06 20:39:21 850 1
原创 Rasberry Pi:树莓派入门汇总
Rasberry Pi:树莓派入门汇总汇总下,入门树莓派时常用的知识。树莓派系统烧录1、首先准备好系统镜像可以去官网下载最新的,也可以去镜像网站找其他版本的。树莓派不仅支持官方的系统还支持,ubuntu、window的ARM版本以及其他一些Linux系统。树莓派镜像网站full版本会自带很多软件,lite是一个有图形操作界面的轻简版本。清华大学镜像网站可以在里面搜索树莓派找到树莓派的相关镜像。2、准备一张SD储存卡,容量要在8G以上(系统大小为7G左右),格式化SD卡,用烧录软件烧录
2021-04-01 09:36:11 598 1
原创 Python:网络爬虫爬取某表情包网站
Pyrhont:网络爬虫爬取某表情包网站参考:爬虫基础知识点汇总(html文件基础和4个常用库 超级详细长文预警)【爬虫教程】吐血整理,最详细的爬虫入门教程~HTML的简单介绍HTML的全称为超文本标记语言,是一种标记语言。它包括一系列标签.通过这些标签可以将网络上的文档格式统一,使分散的Internet资源连接为一个逻辑整体。HTML文本是由HTML命令组成的描述性文本,HTML命令可以说明文字,图形、动画、声音、表格、链接等。作为爬虫初学者,我们了解HTML的基本组成、标签以及 标签的属性
2021-03-26 11:57:54 746 1
原创 Python:报错‘Permissiondenied 路径:xxx‘
Python:报错’Permissiondenied 路径 xxxxxxx’
2021-03-24 23:17:01 756
原创 Python:OpenCV4人体姿态检测
OpenCV4:人体姿态检测参考:Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)应用opencv的神经网络模块加载关键点检测网络进行人体的关键点检测。值得注意的是openpose检测关键点速度很慢,无法做到实时检测,更不要说在移动设备上运行了。实现原理图片来自参考博客两个分支最后得到的是关节置信度分布图和关节亲和度分布图(个人理解)实现神经网络图片来自参考博客前十层为VGG19的前十层,进行特征提取。后面分为两个分支:第一个分支得到的是人体各个关节的
2021-03-24 10:59:15 5027 6
原创 Python:OpenCV4识别一个蓝色的圆并估算到相机的距离
Python:OpenCV4识别一个蓝色的圆并估算到相机的距离参考:用 Python 和 OpenCV 来测量相机到目标的距离这位博主对实现过程以及思路解释的很清楚,这里记录下自己的实现过程以及自己的一些理解注:这个方法有些缺陷,需要参照物体,提前求出一些参数。识别一个蓝色的圆直接用画图做了个圆,因为这样情况比较理想,不用反复调参数import cv2import numpy as npimport math# 图片路径img_path = './buleball.jpg'# 读
2021-03-11 23:06:57 965 1
原创 Python:OpenCV4人脸关键点检测以及表情检测
Python:OpenCV4人脸关键点检测以及表情检测参考:基于Python,dlib实现人脸关键点检测这位博主写的很详细,这里记录下自己的实现过程。通过OpenCV4和dlib库实现对人脸关键点检测以及表情检测如果是window环境那么dlib库的安装就很简单pip安装即可,如果是mac或者linux那么安装会麻烦一点,需要自行编译以及其他依赖,这里就不再记录。模型下载模型需要下载,官网和镜像网站下载很慢,链接:链接:https://pan.baidu.com/s/1PEmBM0nqqmeCp8
2021-03-09 23:13:03 3602 4
原创 报错记录:树莓派3b串口 module ‘serial‘ has no attribute ‘Serial‘
报错记录:树莓派3b串口 module ‘serial’ has no attribute ‘Serial’背景首先稍微说下背景,因为要用到树莓派3b的串口,所以要用到serial这个包,在用pip下载后发现报错:module ‘serial’ has no attribute 'Serial’说serial这个包没有Serial这个方法,但是我明明导入了而且成功了,并且串口的配置也没有问题。找问题首先配置串口:树莓派3b/4b通用 + 串口配置如果不会可以参考这个。然后检查文件名,如果文件名和包
2021-02-23 00:51:11 1648 2
原创 python:Opencv4答题卡检测实例练习
python:Opencv4答题卡检测1实例练习利用python+opencv对答题卡进行检测,圈出正确的答案,并打印出得分。原始图像:最终结果:实现过程读入图像并转化为灰度图# 读入图像img_org = cv2.imread(img_path)cv_show('img_org', img_org)img = cv2.cvtColor(img_org, cv2.COLOR_BGR2GRAY)1.图像预处理主要对图像进行去噪和透视变换首先对图像降噪'''图像预处理''
2021-02-22 01:09:20 688 4
原创 keil 5 报错记录:..\OBJ\templiate.axf: Error: L6218E: Undefined symbol PcdHalt (referred from rc522.o).
keil 5 报错记录:…\OBJ\templiate.axf: Error: L6218E: Undefined symbol PcdHalt (referred from rc522.o).先来百度翻一下:目标\模板.axf:错误:L6218E:未定义符号PcdHalt(来自rc522.o)。忽略掉乱七八糟的东西,就是说这个函数未定义.o文件是keil在编译.c文件时产生的中间文件,那个文件出问题了就找那个.c或.h文件就可以。报错Undefined symbol 一般有四种情况:1…c或
2021-01-26 20:23:47 8467
原创 STM32(学习笔记3):IIC通信总结
STM32:IIC通信总结说明此篇博客为学习笔记,用来总结学到的知识。IIC介绍:(来自百度百科)IIC总线是飞利浦公司开发的一种双线、半双工的同步串行总线。IIC串行总线一般有两根信号线,一根是双向的数据线SDA,另一根是时钟线SCL。所有接到I2C总线设备上的串行数据SDA都接到总线的SDA上,各设备的时钟线SCL接到总线的SCL上。IIC总线是各种总线中使用信号线最少,并具有自动寻址、多主机时钟同步和仲裁等功能的总线。因此,使用I2C总线设计计算机系统十分方便灵活,体积也小,因而在各类实际
2021-01-24 21:55:55 684
原创 Python:OpenCV4 常用图像处理方法记录(学习笔记)
说明:此篇为学习笔记,记录学习中常用到的方法,如有错误请评论指出。正篇更改图像路径并去除注释后,可观察处理后的图像结果。import cv2import numpy as npimport matplotlib as plt'''阈值处理image = cv2.imread('E:/LearnMore/python/pycharm/OpenCV4/apple4.jpg')cv2.imshow('image', image)cv2.waitKey(0)# threshold(s
2021-01-05 23:02:56 392 1
原创 STM32学习笔记(2):通用定时器中断
说明此篇作为学习笔记,如有错误还请评论指出。正篇STM32单片机的定时器资源:(图片来源正点原子B站教程)这里是主要针对通用定时器的笔记。STM32通用定时器的特点:通用定时器是一个通过可编程预分频器驱动的16位自动装载计数器构成。它适用于多种场合,包括测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和PWM)。使用定时器预分频器和RCC时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。每个定时器都是完全独立的,没有互相共享任何资源。它们可以一起同步
2020-12-05 19:36:37 1172
原创 STM32学习笔记(1):串口USART通信
说明此篇作为学习笔记,如有错误还请评论指出。正篇1.处理器与外部设备通信的两种方式:并行通信:-传输原理:数据的各个位同时传输-优点:速度快-缺点:占用引脚资源多串行通信:-传输原理:一位一位地传输数据-优点:占用资源较少-缺点:速度慢串口通信按照传输的方向可以分为:单工,半双工和全双工。单工:只能一个方向上进行传输半双工:允许双向通信,但是同一时间只能是单一方向传输。(类似于两个时间切换方向的单工)全双工:允许同时间的双向通信。串口的通信方式可分为:同步和异步通信。同步通
2020-11-27 21:38:13 872
原创 Python:OpenCV学习笔记(1)之训练数据
主体思路:将某一目录下的图片转化为数组,获取每张图片中人脸部分的数据保存到事先创建好的列表中,同时获取每张图片的ID,同样保存在事先创建好的列表中,最后将训练后的数据保存。import cv2 as cvimport os import sysfrom PIL import Imageimport numpy as npdef getImageAndLabels(path): facesSamples = [] ids = [] # 将图片路径保存在imagePath
2020-11-23 21:49:59 416
原创 51单片机学习之智能小车(2)
说明:上篇主要介绍了小车用到的模块,此篇为代码部分,以及简单介绍调试中遇到的问题。如有问题请评论指出。(上篇:51单片机学习之智能小车(1))主要代码内容:头文件(函数声明和引脚定义)在上篇展示。一些资源初始化和延时“51car.c”#include "../HEAD/51car.h"/****10us延时****/void Delay10us() //@12.000MHz{ unsigned char i; _nop_(); _nop_(); i = 27; while
2020-11-21 22:36:40 1073 1
原创 51单片机学习之智能小车(1)
51单片机学习之智能小车(1)学习51单片机一段时间,很有必要自己动手做一点东西。小车概述(功能,所用模块)(1)蓝牙控制通过手机上蓝牙串口调试助手,实现无线控制小车运动与用户信息交流。所用模块: BT-06蓝牙模块(2)红外循迹通过红外循迹模块,检测轨迹,自动按预定轨迹运动。所用模块:红外循迹模块(3)超声波避障通过超声波模块检测障碍物的距离,实现自动避障。功能实现1、基础功能的实现:1.小车电机:采用TT马达,工作电压为3-6V,6V供电时,空载输出电流为230ma。图示为
2020-11-19 22:57:07 3719 2
BC26资料下载.zip
2021-04-06
SYN6288语音合成模块资料.zip
2021-04-06
MLX90614_官方文档-中英文.zip
2021-04-06
GPS模块NEO-6M资料
2021-04-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人