pgbouncer连接池的应用 pgbouncer是连接池。其实plproxy,pgpool什么的,都有这功能。pgbouncer与之相比,最大的好处是简单,小型。如果不需要负载均衡什么的功能,用pgbouncer就足够了。PgBouncer的特点a.内存消耗低(默认为2k/连接),因为Bouncer不需要每次都接受完整的数据包b.可以把不同的数据库连接到一个机器上,而对客户端保持透明c.支持在线的重新配置而无须重启...
pgbench的应用 pgbench是一种在PostgreSQL上运行基准测试的简单程序。它可能在并发的数据库会话中一遍 一遍地运行相同序列的 SQL 命令,并且计算平均事务率(每秒的事务数)。pgbench支持两种测试方式:1、默认情况 下,pgbench会测试一种基于 TPC-B 但是要更宽松的场景,其中在每个事务中涉及五 个SELECT、UPDATE以及INSERT命令。2、用户可以通过编写自己的事务脚本文件...
PostgreSQL源码安装 1、安装前准备1.1、主机硬件配置4G内存,40G磁盘1.2、配置OS内核参数kernel.shmall、kernel.shmmax、kernel.shmmni共享内存相关参数,在9.2以及以前的版本,数据库启动时,对共享内存段的内存需求非常大。后期版本要求不大,但可参考此设置。1.3、配置OS资源限制vi /etc/security/limits.confsoft nofi...
postgresql 9.6主从流复制部署 ⼀、准备环境操作系统:CentOS Linux release 7.4数据库版本:PostgreSQL 9.6.12主库:192.168.189.152从库:192.168.189.153⼆、主机数据库部署以下操作步骤请在两个节点进⾏,主库需要安装数据库软件以及初始化数据库,从库仅需要安装数据库软件即可⽆需初始化。1、添加RPM源[root@localhost opt]# yum...
GaussDB T 建库脚本之:initdb 在 GaussDB T 的创建过程中 initdb.sql 创建了数据库的核心对象,共计约 117 个。通过这些核心对象,可以了解 GaussDB 的基本工作原理。收录这个脚本如下,供参考。CREATE TABLE SYS_SEQUENCES(UID BINARY_INTEGER NOT NULL,ID BINARY_INTEGER NOT NULL,NAME VARCHAR(64) ...
GaussDB 如何启动和关闭数据库的归档模式 GaussDB 在创建数据库时,可以指定数据库的归档模式,也可以在创建之后自由修改。可以通过 V$DATABASE 视图来查看数据库的归档模式:SQL> select name,log_mode from v$database;NAME LOG_MODEGAUSS ARCHIVELOG修改数据库的归档模式需要在 Mount 状态下进行:[omm@enmodb1 ~]$ pyth...
Gauss100搭建文档 1、系统初始化systemctl stop firewalldsystemctl disable firewalldfirewall-cmd --statecd /etc/sysconfig/network-scripts/2、优化内核参数修改/etc/sysctl.conf,添加如下参数:kernel.sem = 50100 128256000 50100 2560net.cor...
CentOS清理swap和buffer/cache swap清理:swapoff -a && swapon -a 注意:这样清理有个前提条件,空闲的内存必须比已经使用的swap空间大cache清理:sync; sync; sync;&& echo3 >/proc/sys/vm/drop_caches sleep 2 echo 0>/proc/sys/vm/drop_cachesTo free pa...
Linux OOM 自动杀死进程 问题描述:登录一台测试服务器,发现部分进程失踪 (Nginx/PHP-FPM/MySQL/Crond)。解决方法:1、首先启动这些进程,保证正常提供服务。2、查看服务器日志信息,排除故障。shell > less /var/log/messages-20160905Sep 3 05:31:10 localdomain kernel: Out of memory: Kill pro...
如何找到系统内存的问题 内存性能指标为了分析内存的性能瓶颈首先,你最容易想到的是系统内存使用情况,比如已用内存、剩余内存、共享内存、可用内存、缓存和缓冲区的用量等。已用内存和剩余内存很容易理解,就是已经使用和还未使用的内存。共享内存是通过 tmpfs 实现的,所以它的大小也就是 tmpfs 使用的内存大小。tmpfs 其实也是一种特殊的缓存。可用内存是新进程可以使用的最大内存,它包括剩余内存和可回收缓存。缓存包括两...
linux中buffer与cache区别 内存性能中 Buffer 和 Cache从写的角度来说,不仅可以优化磁盘和文件的写入,对应用程序也有好处,应用程序可以在数据真正落盘前,就返回去做其他工作。从读的角度来说,既可以加速读取那些需要频繁访问的数据,也降低了频繁 I/O 对磁盘的压力。Buffer 既可以用作“将要写入磁盘数据的缓存”,也可以用作“从磁盘读取数据的缓存”。Cache 既可以用作“从文件读取数据的页缓存”,也可以用...
hive视图与Oracle视图的区别 hive表之视图1、视图是一个虚表,一个逻辑概念,可以跨越多张表。表是物理概念,数据放在表中,视图是虚表,操作视图和操作表是一样的,所谓虚,是指视图下不存数据。2、视图是建立在已有表的基础上,视图赖以建立的这些表称为基表3、视图可以简化复杂的查询oracle/mysql表之视图视图是从已存在表上抽出逻辑相关的数据集合,其本身和表的区别不大,都是对数据一种存储,只不过我们可以在已有表的基础...
python基础知识 一、变量当你把一个值赋值给一个名字的时候,它会存储在一个内存中,把这块内存称为变量(variable)再说的简单一点,就是一个会变的量。Python和大多数的计算机语言不太一样,它不是把值存储在变量中,它是把名字贴在值边上。所以有些python程序员会说,Python没有变量,只有名字。变量,它就是一个名字,通过这个名字,我们可以找到我们想要的东西。这里我们需要注意的是:在使用变量之前,需...
走进大数据之 ETL 开发环境准备 :开发需检查以下环境是否ready:SAP开发用测试数据源准备就绪。数据仓库的Oracle(MySQL)数据库准备就绪,ETL要加载的表已创建。ETL Server的相关软件(DataStager Server及MetaStage)已安装就绪。ETL Server与SAP数据源及目标Oracle数据库的连接已通过测试。在ETL Server上创建与Oracle连接的ODB...
走进大数据之HDFS HDFS介绍Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。HDFS设计目标1...
Impala和Hive之间的SQL差异 Impala和Hive之间的SQL差异Impala的SQL语法遵循SQL-92标准,并且在内置功能等领域包括许多行业扩展。有关将SQL代码从各种数据库系统移植到Impala的一般讨论,请参见将SQL从其他数据库系统移植到Impala。由于Impala和Hive共享相同的metastore数据库,并且它们的表经常互换使用,因此以下部分详细介绍了Impala和Hive之间的区别。HiveQL功能...
Impala入门 概述Apache Impala是Apache Hadoop的开源原生分析数据库;Impala于2017年11月15日从Apache孵化成顶级项目。在以前称为“Cloudera Impala”的文档中,现在的官方名称是“Apache Impala”。Impala为Hadoop上的BI /分析查询提供低延迟和高并发性(不是由Apache Hive等批处理框架提供)。即使在多租户环境中,Impal...
hadoop支持lzo压缩 启用lzo的压缩方式对于小规模集群是很有用处,压缩比率大概能降到原始日志大小的1/3。同时解压缩的速度也比较快。安装准备jar包1)先下载lzo的jar项目https://github.com/twitter/hadoop-lzo/archive/master.zip2)下载后的文件名是hadoop-lzo-master,它是一个zip格式的压缩包,先进行解压,然后用maven编译。生成...
计算层优化之数据倾斜 在MapReduce执行的过程中,会把任务的原始数据分片到多个Task中执行。想象以下场景,当任务的多数Task都在短时间内完成,只有个别Task执行的时间特别长,从而拖慢了整个任务的执行速度,浪费了资源。表现形式就是任务进度卡在99%,这种现象就是数据倾斜。MapReduce流程:① 文件分片,一个分片交由一个map task执行② map task首先把数据从磁盘读入内存环形缓冲区,在...
计算层优化之系统优化 在大数据离线计算平台上每天会有上万个任务在执行,对cpu、内存、存储资源由极大的消耗,那么如何降低资源使用率、提高计算效率,就涉及到计算优化的问题。从系统优化方面来讲:HBO1)HBO 是根据任务的历史执行情况优化资源分配2)HBO方案提出:① 在Hadoop中map task与reduce task的task个数分配是根据用户提交的任务总数据量和每个map task能处理的数据量决定的。...