http://www.lydsy.com/JudgeOnline/problem.php?id=1592
1592: [Usaco2008 Feb]Making the Grade 路面修整
Time Limit: 10 Sec Memory Limit: 162 MBDescription
FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, … , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, … , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + … + |A_N - B_N| 请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。
Input
* 第1行: 输入1个整数:N * 第2..N+1行: 第i+1行为1个整数:A_i
Output
* 第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费
Sample Input
1
3
2
4
5
3
9
Sample Output
HINT
FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列 1,2,2,4,5,5,9。
Source
高度离散化一下,
f[i][j]
表示到第
i
个位置,高度为
正反分别做一次
n2
递推就好了。
【代码】
#include <iostream>
#include <cstdio>
#include <algorithm>
#define N 2005
#define INF 1000000001
using namespace std;
typedef long long ll;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
int n,tot,ans;
int f[N][N],a[N],hash[N];
void Input_Init()
{
n=read();
for(int i=1;i<=n;i++) hash[i]=a[i]=read();
sort(hash+1,hash+1+n);
tot=unique(hash+1,hash+1+n)-hash-1;
}
void DP()
{
for(int i=1;i<=n;i++) f[i][0]=f[i][tot+1]=INF;
for(int i=1;i<=n;i++)
for(int j=1;j<=tot;j++)
f[i][j]=min(f[i][j-1],f[i-1][j]+abs(a[i]-hash[j]));
ans=f[n][tot];
for(int i=n;i;i--)
for(int j=1;j<=tot;j++)
f[i][j]=min(f[i][j-1],f[i+1][j]+abs(a[i]-hash[j]));
printf("%d\n",ans,f[1][tot]);
}
int main()
{
Input_Init();
DP();
return 0;
}