折线分割平面
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 22393 Accepted Submission(s): 15259
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2 1 2
Sample Output
2 7
省题:
该题为递推数学题;
图要自己去画,前面两条题目都已经给出了;
那么你把 n=3 的时候画出来就可以看到了,应该是被分成了16块;
n=4 的时候画出来可以看到,最多被分成了29块;
那么由 n=1 的时候分成了快; n=3 的时候分成了 7 快,可以推出来:f(2)-f(1)=5;
f(3)-f(2)=9; 9-5=4;
f(4)-f(3)=13; 13-9=4;
那么他们的加数的都是每次增加了 4;
可以推出 a(n)=5+4*(n-1); ---> a(n)=4*n+1
所以可推出:f(n)=f(n-1)+4*(n-1)+1;
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
long long num[10005];
int main()
{
num[1] = 2;
num[2] = 7;
for (int i = 3; i < 10005; i++)
num[i] = num[i - 1] + 4 * (i - 1) + 1;
int t,n;
cin >> t;
while (t--)
{
cin >> n;
cout << num[n] << endl;
}
return 0;
}