CentOS 安装PaddlePaddle记录

一、Anaconda安装及配置

Anaconda是一个可用于科学计算的 Python 发行版,支持 Linux、Mac、Windows系统,内置了常用的科学计算包。它解决了官方

Python 的两大痛点。

第一:提供了包管理功能,Windows 平台安装第三方包经常失败的场景得以解决

第二:提供环境管理的功能,功能类似 Virtualenv,解决了多版本Python并存、切换的问题。

 1.1 安装

xugj@lenovo:~$ wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh
xugj@lenovo:~$ bash Anaconda3-2023.03-Linux-x86_64.sh

1.2 配置conda源

配置国内阿里源,或者清华源,加快包下载及安装速度。

Linux用户可以通过新建或修改用户目录下的 .condarc 文件(cd ~ 的目录即为用户目录)

channels:
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.aliyun.com/anaconda/pkgs/main
  - http://mirrors.aliyun.com/anaconda/pkgs/r
  - http://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.aliyun.com/anaconda/cloud
  msys2: http://mirrors.aliyun.com/anaconda/cloud
  bioconda: http://mirrors.aliyun.com/anaconda/cloud
  menpo: http://mirrors.aliyun.com/anaconda/cloud
  pytorch: http://mirrors.aliyun.com/anaconda/cloud
  simpleitk: http://mirrors.aliyun.com/anaconda/cloud

1.3 配置pip源

有些软件使用pip安装,所以需要把pip源同时配置上。

Linux用户可以通过新建或修改用户目录下的 ~/.pip /pip.conf 文件(cd ~ 的目录即为用户目录)

如下是配置为清华源

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
[install]
trusted-host = pypi.tuna.tsinghua.edu.cn

二、PaddlePaddle安装及验证

参照官方文档:开始使用_飞桨-源于产业实践的开源深度学习平台

2.1 创建虚拟环境

首先根据具体的 Python 版本创建 Anaconda 虚拟环境,PaddlePaddle 的 Anaconda 安装支持 3.6 - 3.10 版本的 Python 安装环境。

bash-4.2$ conda create -n paddle_env python=3.9.13
(base) bash-4.2$ conda activate paddle_env
(paddle_env) bash-4.2$ python --version

2.2 CPU 版的 PaddlePaddle

如果您的计算机没有 NVIDIA® GPU,请安装 CPU 版的 PaddlePaddle

(paddle_env) bash-4.2$ conda install paddlepaddle==2.4.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/

2.3 验证安装

安装完成后您可以使用 python 或 python3 进入 python 解释器,输入import paddle ,再输入 paddle.utils.run_check()

如果出现PaddlePaddle is installed successfully!,说明您已成功安装

(paddle_env) bash-4.2$ python3
Python 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:58:50)
[GCC 10.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import paddle
/data/bmoss/anaconda3/envs/paddle_env/lib/python3.9/site-packages/pkg_resources/__init__.py:121: DeprecationWarning: pkg_resources is deprecated as an API
  warnings.warn("pkg_resources is deprecated as an API", DeprecationWarning)
/data/bmoss/anaconda3/envs/paddle_env/lib/python3.9/site-packages/pkg_resources/__init__.py:2870: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('google')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
  declare_namespace(pkg)
>>> paddle.utils.run_check()
Running verify PaddlePaddle program ...
PaddlePaddle works well on 1 CPU.
/data/bmoss/anaconda3/envs/paddle_env/lib/python3.9/site-packages/paddle/fluid/executor.py:1583: UserWarning: Standalone executor is not used for data parallel
  warnings.warn(
W0410 17:48:20.099856 21650 fuse_all_reduce_op_pass.cc:79] Find all_reduce operators: 2. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 2.
PaddlePaddle works well on 2 CPUs.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
>>>

### 在 CentOS安装和配置 PaddlePaddle 深度学习框架 #### 一、环境准备 在 CentOS 系统上安装 PaddlePaddle 前,需确认操作系统版本以及硬件设备的支持情况。推荐使用 CentOS 7 或更高版本[^2]。 #### 二、安装依赖项 确保系统已安装必要的工具和库文件。可以通过以下命令更新系统并安装基础开发包: ```bash sudo yum update -y sudo yum groupinstall "Development Tools" -y ``` #### 三、安装 Anaconda Anaconda 是 Python 的科学计算发行版,能够简化虚拟环境管理和依赖管理的过程。按照官方文档中的说明下载并安装 Anaconda[^3]: ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh bash Anaconda3-2023.07-1-Linux-x86_64.sh ``` 完成安装后初始化 Conda 并创建一个新的虚拟环境: ```bash conda create -n paddle_env python=3.9 conda activate paddle_env ``` #### 四、安装 NVIDIA 驱动程序(GPU 版本) 如果计划运行 GPU 加速模型,则需要先安装兼容的 NVIDIA 显卡驱动程序。建议通过 RPM 包方式或者手动编译方式进行安装,并注意关闭图形界面以避免冲突。 #### 五、安装 CUDA 和 cuDNN 对于 GPU 支持,还需要安装匹配版本的 CUDA Toolkit 及其对应的 cuDNN 库。例如针对特定显卡架构选择合适的组合来满足性能需求: ```bash # 下载地址可以根据实际需要调整 wget https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-repo-rhel7-11.2-local-11.2.1-460.32.03-1.x86_64.rpm sudo rpm -ivh cuda-repo-rhel7-11.2-local-11.2.1-460.32.03-1.x86_64.rpm sudo yum clean all sudo yum install cuda -y ``` #### 六、安装 PaddlePaddle 根据是否启用 GPU 来决定具体的安装方法: ##### CPU 版本 适用于仅利用中央处理器资源的情况: ```bash pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple ``` ##### GPU 版本 当具备支持的 NVIDIA 图形处理单元时可采用此选项;需要注意的是所选镜像应与本地设置相吻合[^1]: ```bash pip install paddlepaddle-gpu -f https://www.paddlepaddle.org.cn/whl/mkl/stable.html ``` 另外,在某些特殊场景下可能需要用到 ROCm 技术栈替代传统 CUDA 方案实现异构运算加速功能[^4]。 #### 七、验证安装成功与否 启动 Python 解释器测试基本功能调用无误即可认为部署完毕: ```python import paddle print(paddle.__version__) x = paddle.to_tensor([1, 2, 3]) out = x.numpy() print(out) ``` #### 八、进一步扩展应用生态 可以考虑集成更多组件提升工作效率,比如用于自然语言处理任务预训练模型加载服务端口开放等功能模块[paddlehub](https://github.com/PaddlePaddle/PaddleHub)[^3]: ```bash pip install paddlehub ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值