创建Notebook如何使用新的虚拟环境(把新的虚拟环境配置为Kernel)

本文指导如何使用conda创建一个名为glm_env的Python3.10.9虚拟环境,然后激活该环境并安装ipykernel包。接着详细说明了如何配置一个新的Jupyter内核,命名为glm_env,其显示名称为glm,以便在JupyterNotebook中使用。

创建虚拟环境

conda create -n glm_env python=3.10.9

激活虚拟环境

conda activate glm_env

安装ipykernel包

conda install ipykernel

配置新的kernel

python -m ipykernel install --user --name glm_env  --display-name glm

–user 指定安装在当前用户的家目录下。

–name glm_env :指定内核的名称为 glm_env 。这个名称会出现在 Jupyter 笔记本中选择内核的列表中。

–display-name glm :指定内核的显示名称为 glm 。这个显示名称会在 Jupyter 笔记本中选择内核时显示。

### 如何在 Jupyter Notebook 或 IPython 中加载和使用已有的 Python 虚拟环境 要在 Jupyter Notebook 或 IPython 中加载和使用已有的 Python 虚拟环境,可以通过以下方法实现: #### 1. **确认虚拟环境的存在** 确保已经通过 `conda` 创建了一个虚拟环境,并且该环境已经被成功激活。如果尚未创建虚拟环境,可以按照如下命令创建一个新的虚拟环境[^4]: ```bash conda create -n your_env_name python=3.x ``` #### 2. **安装 IPython 内核** 为了使 Jupyter Notebook 支持特定的虚拟环境,在目标环境中安装 `ipykernel` 是必要的。执行以下命令来完成此操作: ```bash conda install ipykernel ``` 这一步会将 IPython 的内核功能引入当前激活的虚拟环境中。 #### 3. **向 Jupyter 添加虚拟环境作为内核** 一旦 `ipykernel` 成功安装,就可以将其注册为 Jupyter 可识别的一个内核选项。具体做法是在终端输入以下指令: ```bash python -m ipykernel install --user --name=your_env_name --display-name "Python (your_env_name)" ``` 这需要注意的是,`--name` 参数定义了内部名称,而 `--display-name` 则决定了它在 Jupyter 界面中的显示方式[^1]。 #### 4. **启动 Jupyter 并选择对应的内核** 当上述步骤全部完成后,启动 Jupyter Notebook 应用程序: ```bash jupyter notebook ``` 进入界面后建一个笔记本文件时,可以从右上角下拉菜单中看到之前设置好的 `"Python (your_env_name)"` 这一选项。选中之后即意味着正在使用的便是指定的那个虚拟环境下的解释器及其库集合[^5]。 #### 示例代码展示 下面给出一段简单的测试代码用来验证所选用的内核是否正确无误。 ```python import sys print(sys.executable) ``` 这段脚本能够打印出当前运行时所在的路径位置;如果是预期中的那个虚拟环境下,则说明一切正常工作。 ### 注意事项 - 如果遇到任何错误提示或者无法找到增加的 kernel ,可能是因为权限不足或者是缓存未更等问题引起的。尝试重启电脑后再试一次往往能解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值