035:Pell数列
总时间限制:
3000ms
内存限制:
65536kB
描述
Pell数列a1, a2, a3, ...的定义是这样的,a1 = 1, a2 = 2, ... , an = 2 * an − 1 + an - 2 (n > 2)。
给出一个正整数k,要求Pell数列的第k项模上32767是多少。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数k (1 ≤ k < 1000000)。
输出
n行,每行输出对应一个输入。输出应是一个非负整数。
样例输入
2 1 8
样例输出
1 408
代码如下:(思路借鉴于035:Pell数列.md · 徒步天下/程序设计与算法一OpenJudge题解 - Gitee.com)
#include <iostream>
#include <cstdio>
using namespace std;
int pell(int N){
if (N == 1){
return 1;
}
else if (N == 2){
return 2;
}
else{
int f1 = 1,f2 = 2,f3;
for (int i = 0;i < (N-2);i++){
f3 = (2*f2 + f1) % 32767;
f1 = f2;
f2 = f3;
}
return f2;
}
}
int main(){
int n;
int data;
cin >> n;
for (int i = 0;i < n;i++){
cin >> data;
cout << pell(data) << endl;
}
return 0;
}
当初自己做题的时候用的递归,思路很简单但是一旦数字超过30速度会明显变慢,因为pell数列的值上升非常快:
1 ----- 1
2 ----- 2
3 ----- 5
4 ----- 12
5 ----- 29
6 ----- 70
7 ----- 169
8 ----- 408
9 ----- 985
10 ----- 2378
11 ----- 5741
12 ----- 13860
13 ----- 33461
14 ----- 80782
15 ----- 195025
16 ----- 470832
17 ----- 1136689
18 ----- 2744210
19 ----- 6625109
20 ----- 15994428
21 ----- 38613965
22 ----- 93222358
23 ----- 225058681
24 ----- 543339720
如此庞大的计算会极其耗费时间
这是我用python模拟出的pell数列前24项可以看到第24项就已经远远超过了int整型的范围,到后来即使long long 类型仍然会溢出,这让我想了很多办法也没成功,后来寻找题解。
看完大佬的题解一直没搞懂函数pell里为什么f3计算的时候要取模32767,一直寻思这样pell数列后面的数不就不对了吗?
在我的朋友lxz的帮助下,我明白了(以下是朋友lxz的思路)
如此f3取模32767并不影响结果
pell(i+2)%32767 就等于(pell(i+1)*2 + pell(i)) % 32767
得到的数据都是正确的
而且取模32767后f3的值不会超过int的范围,计算时间大大节省可以完成题目要求