399. Evaluate Division

Equations are given in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0.

Example:
Given a / b = 2.0, b / c = 3.0. 
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? . 
return [6.0, 0.5, -1.0, 1.0, -1.0 ].

The input is: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries , where equations.size() == values.size(), and the values are positive. This represents the equations. Return vector<double>.

思路,用深度优先算法来求解。先用一个映射mp来存放已知的式子中的分子分母和结果(mp中既要包含已知的式子,也要包含已知式子的倒数,否则用dfs会出现错误),然后看要求的分子和分母是否在mp,若分子分母中有一个不在mp中,则结果是-0.1;否则,通过dfs来得出结果(mp中和结果分子相同的开始)。

class Solution {
public:
    vector<double> calcEquation(vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries) {
        vector<double> result(queries.size());
        if(!queries.size())
            return result;
        unordered_map<string, unordered_map<string,double>> mp;
        unordered_set<string> temp;
        mp.clear();
        bool canReach = true;
        double res = 1.0, tmpres;
        for(int i = 0; i < equations.size(); ++ i){
            mp[equations[i].first][equations[i].second] = values[i];
            mp[equations[i].second][equations[i].first] = 1.0/values[i];
        }
        for(int i = 0; i < queries.size(); ++ i){
            if(mp.find(queries[i].first) == mp.end() || mp.find(queries[i].second) == mp.end())
                result[i] = -1.0;
            else{
                canReach = false;
                tmpres = 1.0;
                res = -1.0;
                temp.clear();
                temp.insert(queries[i].first);
                dfs(queries[i].first, queries[i].second, res, tmpres, canReach, mp, temp);
                result[i] = res;
            }
        }
        
        return result;
    }
private:
    void dfs(string &sta, string &ends, double &res, double &tmpres, bool &canReach, unordered_map<string, unordered_map<string,double>> &mp, unordered_set<string> &vis){
        if(sta == ends){
            res = tmpres;
            canReach = true;
            return ;
        }
        unordered_map<string,double>::iterator it = mp[sta].begin();
        double vres = 1.0;
        string u = "";
        for(; it != mp[sta].end(); ++ it){
            if(vis.find(it->first) != vis.end())
                continue;
            vres = tmpres*it->second;
            u = it->first;
            vis.insert(it->first);
            dfs(u, ends, res, vres, canReach, mp, vis);
        }
    }
   
};

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值