递推之生兔子,生小牛问题

本文通过两个经典的兔子繁殖问题介绍了递推算法的应用。首先分析了每对成熟兔子每天产下一公一母小兔子的情况,并给出了递推公式f(n)=f(n-1)+f(n-3)。接着分析了母牛繁殖问题,同样给出了解决方案和递推公式f(n)=f(n-1)+f(n-2)。
摘要由CSDN通过智能技术生成

递推的题目都是从最小的情况开始考虑,然后找出规律:
先分析n = 1.2.。。几种情况;
再分析第n种次可能出现的情况,分析每一种情况找到f(n)与f(n-2),f(n-1)。。。等的关系


养兔子

Time Limit: 1000MS  Memory Limit: 65536KB
Problem Description

一对成熟的兔子每天能且只能产下一对小兔子,每次都生一公一母,每只小兔子的成熟期是1天,小兔子出生后隔一天才能再生小兔子。第一天某人领养了一对成熟的兔子,一公一母,请问第N天以后,他将会得到多少对兔子。

Input

测试数据包括多组,每组一行,为整数n(1≤n≤90)。
输入以0结束。

Output

对应输出第n天有几对兔子(假设没有兔子死亡现象,而且是一夫一妻制)。

Example Input
1
2
0
Example Output
1
2
#include <stdio.h>
#include <stdlib.h>


int main()
{
   int n,i;
   while(scanf("%d",&n)&&n)
                                                                                                  )
   {
       long long int h[100];
       h[1] = 1;
       h[2] = 2;
       h[3] = 3;
       for(i=4;i<=n;i++)
        h[i] = h[i-1]+h[i-3];
       printf("%lld\n",h[n]);






   }
    return 0;
}


公式为f(n) = f(n-1)+f(n-3)
 即昨天的小牛数加刚出生的小牛数(因为三年前的小牛数都具有生育能力,所以刚出生的小牛数就等于三年前的小牛数 ,
小牛刚出生的那一年为第一年,所以是三年前,不是四年前)

母牛的故事

Time Limit: 1000MS  Memory Limit: 65536KB
Problem Description

有一对夫妇买了一头母牛,它从第2年起每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。请编程实现在第n年的时候,共有多少头母牛?

Input

输入数据由多个测试实例组成,每个测试实例占一行,包括一个整数n(0< n< 55),n的含义如题目中描述。 n=0表示输入数据的结束,不做处理。

Output

对于每个测试实例,输出在第n年的时候母牛的数量。 每个输出占一行。

Example Input
2
4
5
0
Example Output
2
4
6

#include <stdio.h>
#include <stdlib.h>


int main()
{
   int n,i;
   while(scanf("%d",&n)&&n)
                                                                                                  
   {
       long long int h[100];
       h[1] = 1;
       h[2] = 2;
       for(i=3;i<=n;i++)
        h[i] = h[i-1]+h[i-2];
       printf("%lld\n",h[n]);






   }
    return 0;
}
兔子出生的题目同理。




评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值