#include<stdio.h>
#include<iostream>
using namespace std;
const int N = 12;//定义所求月份
/*著名意大利数学家Fibonacci曾提出一个问题:有一对小兔子,从出生后第3个月起每个月都生一对兔子。
小兔子长到第3个月后每个月又生一对兔子。按此规律,假设没有兔子死亡,第一个月有一对刚出生的小兔子,
问第n个月有多少对兔子?*/
//总体思路是f(n)=f(n-2)+f(n-1) 即本月的兔子=本月新出生兔子+以前留下的老兔子
//因为2个月之前的兔子此时全部具有繁殖能力 因此新兔子的数量=f(n-2)
//又因为前一个月的兔子全部活下来了 因此本月的老兔子数量=f(n-1)
void RabbitBreeding1(int n);
void RabbitBreeding2(int n);
void RabbitBreeding3(int n);
//求最大公约数
//1.辗转相除法:取两个数中最大的数做除数,较小的数做被除数,用最大的数除较小数,
//如果余数为0,则较小数为这两个数的最大公约数,
//如果余数不为0,用较小数除上一步计算出的余数,直到余数为0,则这两个数的最大公约数为上一步的余数。
void GreatestCommonDivisor1();
//2.相减法:取两个数中的最大的数做减数,较小的数做被减数,用最大的数减去小数,
//如果结果为0,则被减数就是这两个数的最大公约数,
//如果结果不为0,则继续用这两个数中最大