1.最大堆:
先取出前100个数,维护一个100个数的最大堆,遍历一遍剩余的元素,在此过程中维护这个最大堆就可以了。
具体步骤如下:
step1:取前m个元素(例如m=100),建立一个大根堆。保持一个大根堆得性质的步骤,运行时间为O(logm);建立一个大根堆运行时间为mO(logm)=O(m logm);
step2:顺序读取后续元素,直到结束。每次读取一个元素,如果该元素比堆顶元素大,直接丢弃;如果小于堆顶元素,则用该元素替换堆顶元素,然后保持最大堆性质。最坏情况是每次都需要替换掉堆顶的最大元素,因此需要维护堆的代价为(N-m)O(lgm); 最后这个堆中的元素就是前最小的100个。时间复杂度为O(N lgm)。
时间复杂度为O(10亿*lg100)。
首先构造大根堆:
堆的定义:n个关键字序列array[0,...,n-1],当且仅当满足下列要求:
(0 <= i <= (n-1)/2)
① array[i] <= array[2*i + 1] 且 array[i] <= array[2*i + 2]; 称为小根堆;
② array[i] >= array[2*i + 1] 且 array[i] >= array[2*i + 2]; 称为大根堆;
n个节点的完全二叉树array[0,...,n-1],最后一个节点n-1是第(n-1-1)/2个节点的孩子。对第(n-1-1)/2个节点为根的子树调整,使该子树称为堆。
对于大根堆,调整方法为:若【根节点的关键字】小于【左右子女中关键字较大者】,则交换。
//构建大根堆:将array看成完全二叉树的顺序存储结构
private int[] buildMaxHeap(int[] array) {
//从最后一个节点array.length-1的父节点(array.length-1-1)/2开始,
//直到根节点0,反复调整堆
for (int i = (array.length - 2) / 2; i >= 0; i--) {
adjustDownToUp(array, i, array.length);
}
return array;
}
//将元素array[k]自下往上逐步调整树形结构
private void adjustDownToUp(int[] array, int k, int length) {
int temp = array[k];
for (int i = 2 * k + 1; i < length - 1; i = 2 * i + 1) {
//i为初始化为节点k的左孩子,沿节点较大的子节点向下调整
if (i < length && array[i] < array[i + 1]) {
//取节点较大的子节点的下标
i++; //如果节点的右孩子>左孩子,则取右孩子节点的下标
}
if (temp >= array[i]) { //根节点 >=左右子女中关键字较大者,调整结束
break;
} else { //根节点 <左右子女中关键字较大者
array[k] = array[i]; //将左右子结点中较大值array[i]调整到双亲节点上
k = i; //【关键】修改k值,以便继续向下调整
}
}
array[k] = temp; //被调整的结点的值放人最终位置
}
堆排序(大根堆):
①将存放在array[0,...,n-1]中的n个元素建成初始堆;
②将堆顶元素与堆底元素进行交换,则序列的最大值即已放到正确的位置;
③但此时堆被破坏,将堆顶元素向下调整使其继续保持大根堆的性质,再重复第②③步,直到堆中仅剩下一个元素为止。
堆排序算法的性能分析:
空间复杂度:o(1);
时间复杂度:建堆:o(n),每次调整o(log n),故最好、最坏、平均情况下:o(n*logn);
稳定性:不稳定
//堆排序
public int[] heapSort(int[] array) {
array = buildMaxHeap(array); //初始建堆,array[0]为第一趟值最大的元素
for (int i = array.length - 1; i > 1; i--) {
int temp = array[0]; //将堆顶元素和堆底元素交换,即得到当前最大元素正确的排序位置
array[0] = array[i];
array[i] = temp;
adjustDownToUp(array, 0, i); //整理,将剩余的元素整理成堆
}
return array;
}
本题中:构造完堆之后将新的元素与大根堆的堆顶元素比较,如果新元素比堆顶元素大,直接舍弃,如果小就跟堆顶元素交换,然后调整大根堆。
public int[] findMin(int[] array,int[] all){
array = buildMaxHeap(array);
//前面100个数字(0-99号)已经取出了
for(int i = 100;i < all.length - 1; i++){
if(all[i] >= array[0]){
continue;
} else {
array[0] = all[i];
adjustDownToUp(array,0,array.length);
}
}
return array;
}
2.快排划分的思想:
每次分割之后只考虑比轴小的一部分,直到比轴小的一部分数量在100多个的时候,采用传统排序算法排序,取前100个。
step1:递归对所有数据分成[a,b),(b,d]两个区间,[a,b)区间内的数都是小于(b,d]区间内的数。
step2:对[a,b)重复 step1操作,直到最左边的区间个数小于100个。注意(b,d]区间不用划分
step3:返回上一个区间,并返回此区间的数字数目。接着方法仍然是对上一区间的左边进行划分,分为[a2,b2),(b2,d2]两个区间,取(a2,b2]区间。如果个数不够,继续 step3操作,如果个数超过100的就重复 step1操作,直到最后右边只有100个数为止。
复杂度为O(10亿*100)