以下是一种可以尝试用来解决上述问题,尽可能得到最多符合要求(两两相加结果小于4000)配对的思路和步骤:
步骤一:对数字进行排序
先将给定的数字从小到大进行排序,这样方便后续操作,能更有序地去寻找合适的两两组合。
比如,经过排序后数字顺序大致如下(实际排序后的完整准确列表略):
[2466, 1057, 1382, 1930, 1211, 1654, 2334, 2323, 2241, 2496, 2446, 1915, 2033, 2202, 2344, 1915, 1909, 2463, 2232, 2098, 2160, 2206, 2691, 2879, 1530, 1426, 2411, 1460, 1107, 2018, 1496, 1555, 1918, 2159]
步骤二:采用双指针法进行匹配
-
初始化指针:
设置两个指针,一个指针left
指向排序后数字列表的开头(即最小的数字),另一个指针right
指向列表末尾(即最大的数字)。 -
开始匹配尝试:
- 计算
left
指针所指数字和right
指针所指数字的和,判断是否小于4000。 - 如果和小于4000,那么这两个数字就是一组符合要求的配对,记录下来这组配对,然后将
left
指针向右移动一位(去尝试下一个较小数字与当前最大数字的组合情况)。 - 如果和大于等于4000,那么说明当前最大数字与最小数字的组合不符合要求,将
right
指针向左移动一位(换一个稍小一点的数字来和当前最小数字尝试组合)。 - 持续重复上述操作,直到
left
指针超过right
指针,意味着所有数字都已经尝试过两两组合的匹配了。
- 计算
例如:
一开始 left
指向1057,right
指向2879,1057 + 2879 = 3936(小于4000),记录下这组配对(1057,2879),然后 left
指针右移一位,指向1107,继续判断1107与2879的和,依次类推。
通过这样的方式,能较为系统地遍历所有数字两两组合的情况,并且在一定程度上可以尽可能多地找到符合要求(相加结果小于4000)的配对,因为先从最大和最小数字的组合开始尝试,能更充分地利用数字大小的差异来寻找合适的组合。
当然,具体的实现过程可以借助编程语言(比如Python)来更高效地完成,以下是一个简单的Python示例代码实现思路(仅示意,实际应用中可根据情况完善和优化):
nums = [2466, 1057, 1382, 1930, 1211, 1654, 2334, 2323, 2241, 2496, 2446, 1915, 2033, 2202, 2344, 1915, 1909, 2463, 2232, 2098, 2160, 2206, 2691, 2879, 1530, 1426, 2411, 1460, 1107, 2018, 1496, 1555, 1918, 2159]
nums.sort() # 对数字列表进行排序
pairs = [] # 用于存储符合要求的配对
left, right = 0, len(nums) - 1
while left < right:
sum_value = nums[left] + nums[right]
if sum_value < 4000:
pairs.append((nums[left], nums[right]))
left += 1
else:
right -= 1
print(pairs)
上述代码先对给定的数字列表进行排序,然后通过双指针法遍历列表,寻找符合相加结果小于4000的两两配对,并将这些配对存储在 pairs
列表中,最后打印输出这些配对。