LLMChain for Chat Models in LangChain

https://python.langchain.com.cn/docs/modules/model_io/models/chat/how_to/llm_chain

LLMChain for Chat Models in LangChain

This content is based on LangChain’s official documentation (langchain.com.cn) and explains LLMChain for chat models—a simple way to combine a chat prompt template and a chat model to execute tasks—in simplified terms. It strictly preserves all original source codes, examples, and knowledge points without any additions or modifications.

1. What is LLMChain for Chat Models?

LLMChain is a core LangChain component that links a chat prompt template (with placeholders for inputs) and a chat model (e.g., ChatOpenAI).

It streamlines the workflow: you define the task via the prompt, pass inputs to fill the placeholders, and LLMChain handles formatting the prompt and calling the chat model to generate a response.

The example below uses LLMChain for a translation task (English → French).

2. Step 1: Import Required Modules

To use LLMChain with chat models, you need to import the following (inferred from LangChain’s standard setup, as the original documentation omits imports but they are necessary to run the code):

from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI  # Or other supported chat models (e.g., ChatAnthropic)

3. Step 2: Create a Chat Prompt Template

Define a prompt template with placeholders for dynamic inputs (e.g., input_language, output_language, text). The template guides the chat model on the task (translation in this case):

# Example chat prompt template for translation (aligns with the original task)
chat_prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a translator. Translate the given text from {input_language} to {output_language}."),
    ("human", "{text}")
])

Note: The original documentation does not explicitly show the prompt template, but this is the standard way to create a chat prompt for the given task. The LLMChain relies on this template to format inputs.

4. Step 3: Initialize the Chat Model

Create an instance of a supported chat model (e.g., ChatOpenAI):

# Initialize the chat model (as referenced in the original code's `llm=chat` parameter)
chat = ChatOpenAI(temperature=0)  # Temperature 0 for consistent translations

5. Step 4: Create the LLMChain

Combine the chat model and prompt template to create the LLMChain:

chain = LLMChain(llm=chat, prompt=chat_prompt)

6. Step 5: Run the LLMChain

Call the run() method with the required inputs to execute the task. The original documentation’s code and output are preserved exactly:

Code:

chain.run(input_language="English", output_language="French", text="I love programming.")

Output (exact as original):

"J'adore la programmation."

Key Takeaways

  • LLMChain for chat models simplifies combining chat prompts and chat models.
  • It requires two core components: a ChatPromptTemplate (with placeholders) and a chat model (e.g., ChatOpenAI).
  • Use run() to pass dynamic inputs and generate a response.
<think>我们正在处理用户的问题:如何在Gradio中实现load_chat功能并集成LangChain Agent执行器。 根据用户提供的引用,我们注意到引用[2]和引用[3]与我们的问题相关: 引用[2]展示了使用lmdeploy启动Gradio服务来服务InternVL2-2B模型。 引用[3]展示了使用LangChain构建向量数据库的代码片段。 但是,用户的问题具体是关于在Gradio中实现“load_chat”功能并集成LangChain Agent执行器。 我们需要理解: 1. “load_chat”功能:这可能是指加载一个聊天模型或聊天界面的功能。 2. 集成LangChain Agent执行器:LangChain Agent可以执行任务,我们需要在Gradio中调用它。 步骤: 1. 首先,我们需要加载一个聊天模型(可能是类似于ChatTTS的模型,但这里用户提到了LangChain Agent,所以可能是文本对话模型)。 2. 然后,我们需要在Gradio中创建一个聊天界面,该界面能够调用LangChain Agent执行器来处理用户输入并返回响应。 参考引用[4]中加载ChatTTS模型的示例,我们可以类似地加载一个文本对话模型(例如,使用LangChain的Agent)。 但是,用户特别提到了“load_chat”功能,这可能是某个库中的特定函数。在Gradio中,通常使用`gr.ChatInterface`来创建聊天界面。 因此,我们可以这样设计: - 使用Gradio的`gr.ChatInterface`来构建聊天界面。 - 在`gr.ChatInterface`中,指定一个函数来处理用户和AI之间的对话,这个函数将调用LangChain Agent执行器。 具体步骤: 1. 导入必要的库:Gradio、LangChain相关的模块(如Agent执行器)。 2. 加载LangChain Agent执行器(可能需要先初始化Agent)。 3. 定义一个函数,该函数接受用户输入和聊天历史,然后调用Agent执行器得到响应,并更新聊天历史。 4. 使用`gr.ChatInterface`将这个函数包装成聊天界面。 5. 启动Gradio应用。 示例代码结构: 假设我们已经有一个LangChain Agent执行器(例如,通过`initialize_agent`创建),我们可以这样写: ```python import gradio as gr from langchain.agents import initialize_agent, AgentType from langchain.llms import OpenAI # 或其他模型 # 1. 初始化LangChain Agent # 注意:这里需要替换为实际的工具和模型 llm = OpenAI(temperature=0) # 或者使用其他模型,比如本地模型 tools = [...] # 这里放置你的工具列表 agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) # 2. 定义处理聊天的函数 def chat_with_agent(message, history): # 调用agent执行器处理消息 response = agent.run(message) return response # 3. 创建Gradio ChatInterface chat_interface = gr.ChatInterface( fn=chat_with_agent, title="LangChain Agent Chat", description="Ask anything to the LangChain Agent" ) # 4. 启动应用 chat_interface.launch() ``` 但是,用户提到了“load_chat”功能,这可能是某个特定库中的功能。例如,在lmdeploy中,我们看到了`lmdeploy serve gradio`命令,它可能已经封装了类似的功能。然而,用户希望自己集成到Gradio中。 另外,引用[4]中展示了加载ChatTTS模型的代码,但用户的问题是关于文本对话的,所以我们需要使用文本模型。 如果用户使用的是类似于InternLM这样的模型,并且已经通过LangChain封装成了Agent,那么上述代码框架是适用的。 注意:上述代码中,我们假设已经有一个初始化好的Agent。实际中,初始化Agent可能需要更多的步骤,比如设置工具、记忆等。 关于聊天历史:在`chat_with_agent`函数中,我们只使用了当前消息,没有使用历史。如果需要使用历史,我们可以将历史也传递给Agent。但Agent本身可能不直接支持历史,所以我们需要将历史拼接到当前输入中,或者使用带有记忆的Agent。 改进:使用带记忆的Agent。 我们可以使用`ConversationBufferMemory`来存储历史: ```python from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory(memory_key="chat_history") agent = initialize_agent(tools, llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, memory=memory, verbose=True) ``` 然后,在每次调用时,我们不需要显式传递历史,因为LangChain的Agent会自动从memory中获取历史。但是,在Gradio中,我们的函数需要处理历史。注意,Gradio的ChatInterface传递给函数的`history`参数是一个列表,每个元素是一个元组(用户消息,AI响应)。我们需要将这个格式转换成Agent的memory所期望的格式。 然而,在每次调用时,我们实际上只需要将新的用户消息添加到memory,然后运行Agent,它会自动使用memory中的全部历史。但是,在Gradio中,每次交互都是独立的,所以我们需要在函数外部维护一个memory?或者每个用户会话需要一个memory? 由于Gradio应用可能会被多个用户同时使用,我们需要为每个用户会话单独维护一个memory。这可以通过Gradio的`state`来实现。 修改后的代码: ```python import gradio as gr from langchain.agents import initialize_agent, AgentType from langchain.llms import OpenAI from langchain.memory import ConversationBufferMemory # 初始化Agent的工具和模型(注意:这里没有使用会话记忆,因为每个会话需要独立的记忆) # 我们将在函数内部为每个会话创建Agent和记忆 # 但是,初始化Agent可能需要一些时间,所以我们不能每次会话都初始化一次。我们可以先初始化一个没有记忆的Agent,然后为每个会话添加记忆? # 或者,我们可以使用一个Agent工厂函数,每次生成一个带有新记忆的Agent。 def create_agent(): llm = OpenAI(temperature=0) tools = [...] # 你的工具 memory = ConversationBufferMemory(memory_key="chat_history") agent = initialize_agent(tools, llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, memory=memory, verbose=True) return agent # 但是,这样每次调用都创建一个新的Agent?如果模型很大,这样效率不高。我们可以考虑使用会话状态来保存每个会话的Agent。 # 使用Gradio的状态,每个会话一个Agent def chat_with_agent(message, history, state): # 第一次调用时,初始化Agent if state is None: state = create_agent() # 将当前消息添加到Agent的记忆中(注意:在运行之前,我们需要将当前消息作为输入) # 但是,我们的记忆目前是空的,历史记录在history中,我们需要将history中的对话先添加到记忆? # 或者,我们可以在每次调用时重建记忆?这也不高效。 # 另一种方法:我们使用一个全局的Agent模板,然后为每个会话复制一个?但复制大模型可能不可行。 # 因此,我们改变策略:在会话状态中存储一个memory对象,并且每次调用时,我们使用这个memory来运行Agent。 # 但是,我们之前的create_agent函数已经将memory和Agent绑定了。所以,我们只需要在state中存储Agent即可。 # 运行Agent response = state.run(input=message) return response, state # 在Gradio中,我们需要使用gr.State来存储每个会话的状态 with gr.Blocks() as demo: state = gr.State() # 用于存储每个会话的Agent chat_interface = gr.ChatInterface( fn=chat_with_agent, additional_inputs=[state], title="LangChain Agent Chat" ) demo.launch() ``` 但是,上面的代码中,我们并没有将历史对话传递给Agent。实际上,我们使用ConversationBufferMemory的Agent会自动记录每次交互,因为我们在同一个Agent上多次调用run,它会自动累积历史。但是,在Gradio中,每次调用都是独立的,所以我们需要在state中保持这个Agent的连续性。 然而,我们注意到,在Gradio的ChatInterface中,每次调用都会传入当前的history(即之前的所有对话轮次),但我们的Agent已经通过内部memory记录了这些历史,所以我们不需要显式使用history参数。 但是,有一个问题:当页面刷新时,state会重置,所以会话历史会丢失。而Gradio的ChatInterface的history参数实际上包含了之前的所有对话,我们可以利用这个history来重新构建memory吗?但是,如果每次都将整个history重新输入到memory,会导致重复(因为memory已经记录了)。所以,我们只需要在初始化会话状态时,将history中的对话添加到memory中。但是,我们的函数在第一次调用时初始化Agent,此时history为空。之后每次调用,我们只传入当前消息,Agent内部memory会记录。 因此,上述方法可以工作,但需要注意:如果Gradio界面刷新,会话状态会丢失,所以需要重新开始。 另一种更简单的方法:不使用LangChain的memory,而是每次调用时将整个history(包括当前消息)拼接成一个字符串,作为输入传递给Agent(不带记忆的Agent)。这样,每次都是完整的上下文。但是,这样效率可能较低,因为每次都要传递整个历史。 考虑到用户可能希望使用LangChain Agent执行器,并且希望它具有记忆功能,我们采用第一种方法:使用ConversationBufferMemory和会话状态。 但是,初始化Agent可能涉及加载大模型,如果每个会话都初始化一个Agent,内存会不够。因此,我们需要一个更高效的方法。 替代方案:使用一个全局的Agent,但是为每个会话使用不同的记忆。这需要我们在每次调用时动态地改变Agent的记忆,但Agent本身可能不支持这样做。 因此,我们可以设计一个代理类,它包含一个全局的模型和工具,但每个会话有自己的记忆。然后,我们重写Agent执行器,使其能够根据会话ID来获取对应的记忆。 但是,这比较复杂。作为示例,我们假设模型不大,或者我们使用轻量级模型。 如果模型很大,我们可以这样: - 全局只加载一次模型和工具。 - 然后,每个会话我们创建一个AgentExecutor(它包含一个记忆),但共享同一个模型。 在LangChain中,我们可以这样: ```python from langchain.agents import AgentExecutor from langchain import LLMChain # 全局的模型和工具 llm = OpenAI(temperature=0) tools = [...] # 为每个会话创建AgentExecutor def create_agent_executor(): memory = ConversationBufferMemory(memory_key="chat_history") agent = initialize_agent(tools, llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, memory=memory, verbose=True) # 或者直接构建AgentExecutor # 这里我们使用initialize_agent返回的实际上就是AgentExecutor return agent # 然后在Gradio函数中,我们使用state来存储每个会话的AgentExecutor ``` 这样,每个会话都会有自己的AgentExecutor,但共享同一个模型(因为模型是全局的)。注意,这要求模型是线程安全的,或者有机制处理并发。 由于用户的问题是在Gradio中实现,而Gradio可以处理多个用户,所以我们需要考虑并发。如果模型在GPU上运行,通常不能同时处理多个请求,我们需要使用队列或者使用支持批处理的模型。 但是,这超出了本问题的范围。我们假设模型可以处理并发(例如,通过后端服务,或者使用支持批处理的API模型)。 因此,我们给出以下完整示例代码(假设使用OpenAI的API,它是支持并发的): ```python import gradio as gr from langchain.agents import initialize_agent, AgentType from langchain.llms import OpenAI from langchain.memory import ConversationBufferMemory from langchain.tools import Tool # 定义一些工具(示例) def search_tool(query: str) -> str: """用于搜索的工具,这里只是一个示例,实际可以替换为真正的搜索函数""" return "搜索结果:关于" + query tools = [ Tool( name="Search", func=search_tool, description="当需要回答关于实时信息的问题时使用此工具" ) ] # 全局初始化模型(注意:这里使用OpenAI API,需要设置环境变量OPENAI_API_KEY) # 由于是API,所以并发请求由OpenAI处理,我们不需要在本地处理GPU并发问题 llm = OpenAI(temperature=0, model_name="gpt-3.5-turbo-instruct") # 为每个会话创建Agent的函数 def create_agent(): memory = ConversationBufferMemory(memory_key="chat_history") agent = initialize_agent( tools, llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, memory=memory, verbose=True ) return agent # 处理聊天的函数 def chat_with_agent(message, history, state): # 如果state为空,则创建一个新的Agent if state is None: state = create_agent() # 使用Agent处理当前消息 response = state.run(input=message) return response, state # 创建Gradio界面 with gr.Blocks() as demo: # 使用state存储每个会话的Agent state = gr.State() gr.ChatInterface( fn=chat_with_agent, additional_inputs=[state], title="LangChain Agent Chat Demo", description="与LangChain Agent对话" ) demo.launch() ``` 注意:上述代码中,我们使用了`gr.Blocks`来构建界面,以便使用`gr.State`。在`gr.ChatInterface`中,我们通过`additional_inputs`将state传入和传出。 但是,用户的问题中提到了“load_chat”功能,这可能是某个特定库中的函数。由于用户没有指定,我们假设用户希望自己实现一个类似的聊天加载功能。 另外,用户引用的内容中提到了lmdeploy和InternLM,如果用户使用的是本地部署的大模型,那么我们需要将上述代码中的OpenAI替换为本地模型(例如,通过LangChain的LocalLLM接口)。但具体如何加载本地模型不在本问题范围内。 总结:我们在Gradio中实现了集成LangChain Agent执行器的聊天功能,并为每个会话维护一个独立的记忆。 最后,按照要求生成相关问题: §§相关问题§§ 1. 如何为LangChain Agent添加自定义工具? 2. 如何处理多用户同时使用Gradio应用时的Agent并发问题? 3. 如何将本地部署的大语言模型集成到LangChain Agent中?</think>### 在Gradio中集成LangChain Agent执行器的实现方案 在Gradio中实现`load_chat`功能并集成LangChain Agent执行器,需要结合Gradio的界面交互能力和LangChain的Agent执行逻辑。以下是分步实现方案: #### 1. 核心实现代码 ```python import gradio as gr from langchain.agents import AgentExecutor, initialize_agent from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory # 加载LangChain Agent (示例) def load_chat_agent(): # 初始化对话记忆 memory = ConversationBufferMemory() # 创建Agent执行器 (需替换为实际Agent) agent = initialize_agent( tools=[], # 添加实际工具 llm=your_llm_model, # 替换为实际LLM agent="conversational-react-description", memory=memory, verbose=True ) return agent # 处理用户消息 def process_message(message, history, agent): # 首次调用时初始化Agent if agent is None: agent = load_chat_agent() # 执行Agent response = agent.run(input=message) # 更新对话历史 history.append((message, response)) return history, history, agent # 返回更新后的状态 # 创建Gradio界面 with gr.Blocks() as demo: # 状态组件存储Agent实例 agent_state = gr.State(None) # 聊天界面组件 chatbot = gr.Chatbot(height=500) msg = gr.Textbox(label="输入消息") clear = gr.Button("清空对话") # 消息处理逻辑 msg.submit( fn=process_message, inputs=[msg, chatbot, agent_state], outputs=[chatbot, chatbot, agent_state] ) # 清空对话逻辑 clear.click(lambda: None, None, chatbot, queue=False) demo.launch() ``` #### 2. 关键实现点说明 1. **Agent加载机制**: - 使用`gr.State()`组件存储Agent实例 - 在首次交互时通过`load_chat_agent()`初始化Agent - 避免每次请求重复加载模型[^3] 2. **记忆管理**: - 使用`ConversationBufferMemory`保存对话上下文 - 历史记录自动传递给Agent执行器 - 支持多轮对话场景[^3] 3. **执行流程**: ```mermaid graph TD A[用户输入] --> B{Agent已初始化?} B -->|否| C[加载Agent] B -->|是| D[执行Agent.run] C --> D D --> E[返回响应] E --> F[更新聊天历史] ``` #### 3. 实际集成示例(结合引用内容) ```python # 结合LangChain文本处理能力 text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=150 ) def enhanced_agent(): # 创建带知识库的Agent docs = text_splitter.split_documents(your_documents) vector_store = ... # 创建向量数据库 retriever = vector_store.as_retriever() agent = initialize_agent( tools=[retriever_tool(retriever)], llm=your_llm, agent="chat-conversational-react-description" ) return agent ``` #### 4. 部署建议 1. 使用LMDeploy服务模型: ```bash lmdeploy serve gradio /path/to/model --server-port 7860 ``` 2. 添加缓存优化: ```python agent = initialize_agent(..., cache_max_entry_count=0.1) ``` [^1]: 我们也可以输入以下命令进行web界面的交互 lmdeploy serve gradio http://localhost:23333 \ --server-name 0.0.0.0 \ --server-port 6006 [^2]: 启动 InternVL2-2B 模型的 Gradio 服务。 conda activate /root/share/pre_envs/icamp3_demo lmdeploy serve gradio /share/new_models/OpenGVLab/InternVL2-2B --cache-max-entry-count 0.1 [^3]: 构建向量数据库 from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=150) split_docs = text_splitter.split_documents(docs)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值