09-11-15:时间复杂度

是说明一个程序根据其数据n的规模大小 所使用的大致时间和空间
说白了 就是表示 如果随着n的增长 时间或空间会以什么样的方式进行增长


for(int i = 0; i < n;++i)
  ;
这个循环执行n次  所以时间复杂度是O(n)

for(int i = 0; i< n;++i)
{
for(int j = 0; j< n;++j)
  ;
}
这嵌套的两个循环 而且都执行n次
那么它的时间复杂度就是  O(n^2)

时间复杂度只能大概的表示所用的时间
而一些基本步骤 所运行的时间不同 我们无法计算 所以省略


for(int i = 0;i < n;++i)
   a = b;

for(int i = 0;i < n;++i)
   ;
这个运行的时间当然是第二个快 但是他们的时间复杂度都是 O(n)
判断时间复杂度看循环

 

 

 

例1:交换i和j的内容。
temp=i; i=j; j=temp;
以上三条语句的频度均为1,该程序的执行时间是与问题规模n无关的常数,因此算法的时间复杂度为常数阶,记作T(n)=O(1)。

例2:变量计数。
(1)x=0;y=0;
(2)for(k=1;k<=n;k++)
(3)  x++;
(4)for(i=1;i<=n;i++)
(5)  for(j=1;j<=n;j++)
(6)     y++;
  以上语句中频度最大的语句是(6),其频度为f(n)= n2,所以该程序段的时间复杂度为T(n)=O(n2)

例3:求两个n阶方阵的乘积C=A×B,其算法如下:
#define n 100
void MatrixMultiply(int A[n][n],int B[n][n],int C[n][n]){ int i,j,k
 for (i=1;i<=n;++i)         /* 次数 n+1 */
for (j=1;j<=n;++j)          /* 次数 n*(n+1)*/
{ C[i][j]=0;                /* 次数  n2  */
        for (k=1;k<=n,k++)  /* 次数 n2(n+1) */
           C[i][j]=C[i][j]+A[i][k]*B[k][j];/* 次数 n3 */
}
}
T(n)=2n3+3n2+2n+1
lim(T(n)/ n3)=2
T(n)=O(n3)

例4:
(1){++x;s=0;}
(2)for (i=1;i<=n;++i) {++x;s+=x;}
(3)for (j=1;j<=n;++j)
(4)    for (k=1;k<=n;k++){++x;s+=x;}
(5) i=1; while(i<=n) i=i*2;执行次数f(n)与n的关系是n=2^f(n)

含基本操作“x增1”的语句的频度分别为1,n,n2和log2n
常见的时间复杂度,按数量级递增排列依次为:常数阶O(1),对数阶0(Log2n),线性阶O(n),线性对数阶0(nLog2n),平方阶O(n2),立方阶0(n3),指数阶O(2n)。通常认为,具有指数阶量级的算法是实际不可计算的,而量级低于平方阶的算法是高效的。

 

 


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/boyzons/archive/2005/10/07/496561.aspx 

 

 

时间复杂度
  (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
  (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
  在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。 按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。 2、空间复杂度 与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作: S(n)=O(f(n)) 我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模。讨论方法与时间复杂度类似,不再赘述。
  (3)渐进时间复杂度评价算法时间性能   主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。
【例3.7】有两个算法A1和A2求解同一问题,时间复杂度分别是T1(n)=100n2,T2(n)=5n3。
     (1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。
     (2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大。即当问题规模较大时,算法A1比算法A2要有效地多。它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方面的质量。在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。
【例3.8】算法MatrixMultiply的时间复杂度一般为T(n)=O(n3),f(n)=n3是该算法中语句(5)的频度。下面再举例说明如何求算法的时间复杂度。
【例3.9】交换i和j的内容。       
      Temp=i;        i=j;        j=temp;   以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。        如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
【例3.10】变量计数之一。
(1) x=0;y=0;
(2) for(k-1;k<=n;k++)
(3)      x++;
(4) for(i=1;i<=n;i++)
(5)        for(j=1;j<=n;j++)
(6)          y++;   
一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分。因此,以上程序段中频度最大的语句是(6),其频度为f(n)=n2,所以该程序段的时间复杂度为T(n)=O(n2)。  当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。
【例3.11】变量计数之二。
(1) x=1;
(2) for(i=1;i<=n;i++)
(3)        for(j=1;j<=i;j++)
(4)            for(k=1;k<=j;k++)
(5)                x++;   
该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:  则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)。 (4)算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。
【例3.12】在数值A[0..n-1]中查找给定值K的算法大致如下:   
(1)i=n-1;           
(2)while(i>=0&&(A[i]!=k))       
(3)      i--;       
(4)return i;       
此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关: ①若A中没有与K相等的元素,则语句(3)的频度f(n)=n; ②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。 (5)最坏时间复杂度和平均时间复杂度   最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。        这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。
【例3.19】查找算法
【例1·8】在最坏情况下的时间复杂度为T(n)=0(n),它表示对于任何输入实例,该算法的运行时间不可能大于0(n)。       
平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。       
常见的时间复杂度按数量级递增排列依次为:常数0(1)、对数阶0(log2n)、线形阶0(n)、线形对数阶0(nlog2n)、平方阶0(n2)立方阶0(n3)、…、k次方阶0(nk)、指数阶0(2n)。显然,时间复杂度为指数阶0(2n)的算法效率极低,当n值稍大时就无法应用。  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值