AM@导数的定义@一元函数可导和连续的关系

abstract

  • 导数时微分学的基本概念
  • 可以从两个和导数概念形成有密切关系的问题:速度问题和切线问题开始介绍
    • v ‾ = s − s 0 t − t 0 \overline{v}=\frac{s-s_0}{t-t_0} v=tt0ss0= f ( t ) − f ( t 0 ) t − t 0 \frac{f(t)-f(t_0)}{t-t_0} tt0f(t)f(t0); v = lim ⁡ t → t 0 f ( t ) − f ( t 0 ) t − t 0 v=\lim\limits_{t\to{t_0}}\frac{f(t)-f(t_0)}{t-t_0} v=tt0limtt0f(t)f(t0)
    • tan ⁡ ϕ = y − y 0 x − x 0 \tan{\phi}=\frac{y-y_0}{x-x_0} tanϕ=xx0yy0= f ( x ) − f ( x 0 ) x − x 0 \frac{f(x)-f(x_0)}{x-x_0} xx0f(x)f(x0); k = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 k=\lim\limits_{x\to{x_0}}\frac{f(x)-f(x_0)}{x-x_0} k=xx0limxx0f(x)f(x0)
    • 也就是从平均变化率质变为 x 0 x_0 x0处的变化率,其反映了因变量自变量的变化而变换的快慢程度
  • 科学技术领域许多概念都有相同的数学形式,从而抽象出函数导数的概念

image-20220701152103455

增量和变化过程

  • Δ x = x − x 0 \Delta{x}=x-x_0 Δx=xx0

    • x → x 0 x\to{x_0} xx0 ⇔ \Leftrightarrow Δ x → 0 \Delta{x}\to{0} Δx0
    • 若令 Δ x = h \Delta{x}=h Δx=h,则 x → x 0 x\to{x_0} xx0 ⇔ \Leftrightarrow h → 0 h\to{0} h0
  • Δ y = f ( x ) − f ( x 0 ) \Delta{y}=f(x)-f(x_0) Δy=f(x)f(x0)= f ( x 0 + Δ x ) − f ( x 0 ) f(x_0+\Delta{x})-f(x_0) f(x0+Δx)f(x0)= f ( x ) − f ( x 0 ) f(x)-f(x_0) f(x)f(x0)

    • f ( x ) → f ( x 0 ) f(x)\to{f(x_0)} f(x)f(x0) ⇔ \Leftrightarrow Δ y → 0 \Delta{y}\to{0} Δy0

导数的极限定义形式

  • 以下表示形式含义是相同的
    1. lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim\limits_{x\to{x_0}}\frac{f(x)-f(x_0)}{x-x_0} xx0limxx0f(x)f(x0)
    2. lim ⁡ Δ x → 0 Δ y Δ x \lim\limits_{\Delta{x}\to{0}}\frac{\Delta{y}}{\Delta{x}} Δx0limΔxΔy
    3. lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim\limits_{\Delta{x}\to{0}}\frac{f(x_0+\Delta{x})-f(x_0)}{\Delta{x}} Δx0limΔxf(x0+Δx)f(x0)= lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h \lim\limits_{h\to{0}}\frac{f(x_0+h)-f(x_0)}{h} h0limhf(x0+h)f(x0)

函数在 x = x 0 x=x_0 x=x0导数的定义

假设

  • 设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某个邻域内有定义,当自变量 x x x x 0 x_0 x0处取得增量 Δ x \Delta{x} Δx时(点 x 0 + Δ x x_0+\Delta{x} x0+Δx仍然在该邻域内),相应地,因变量取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta{y}={f(x_0+\Delta{x})-f(x_0)} Δy=f(x0+Δx)f(x0)

可导和导数

  • lim ⁡ Δ x → 0 Δ y Δ x = A \lim\limits_{\Delta{x}\to{0}}\frac{\Delta{y}}{\Delta{x}}=A Δx0limΔxΔy=A存在,则 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0可导

  • 并称该极限 A A A为函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0处地导数,记为 f ′ ( x 0 ) f'(x_0) f(x0)

    • f ′ ( x 0 ) f'(x_0) f(x0)= lim ⁡ Δ x → 0 Δ y Δ x \lim\limits_{\Delta{x}\to{0}}\frac{\Delta{y}}{\Delta{x}} Δx0limΔxΔy(1)

    • 也可以记为: y ′ ∣ x = x 0 y'|_{x=x_0} yx=x0,或 d y d x ∣ x = x 0 \frac{dy}{d{x}}|_{x=x_0} dxdyx=x0,或 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}|_{x=x_0} dxdf(x)x=x0

    • lim ⁡ Δ x → 0 Δ y Δ x = { lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{\Delta x\to 0}{\frac{\Delta y}{\Delta x}} =\begin{cases} \lim\limits_{\Delta x\to 0}{\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}} =\lim\limits_{h\to 0}{\frac{f(x_0+h)-f(x_0)}{h} } \\ \lim\limits_{x\to x_0}{\frac{f(x)-f(x_0)}{x-x_0}} \end{cases} Δx0limΔxΔy= Δx0limΔxf(x0+Δx)f(x0)=h0limhf(x0+h)f(x0)xx0limxx0f(x)f(x0)

  • 这里强调 x 0 x_0 x0处的导数,与导函数的简称导数不同

不可导和导数无穷大

  • 如果导数定义中的极限式(1)不存在,则 x 0 x_0 x0不可导
  • 如果不可导的原因是极限为无穷大,则为方便起见,称** x = x 0 x=x_0 x=x0处导数无穷大**
    • 其表示函数在 x = x 0 x=x_0 x=x0处不可导,且原因是极限式(1)无穷大,而不是说导数存在

导函数的定义

  • 和导数的定义类似,我们将导数定义中的 x 0 x_0 x0替换为 x x x即得导函数(简称导数)
    • f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x)=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)= lim ⁡ h → 0 f ( x + h ) − f ( x ) h \lim\limits_{h\to 0}\frac{f(x+h)-f(x)}{h} h0limhf(x+h)f(x)

极限式中的变量👺

  • 上述定义中,在极限过程中 Δ x \Delta{x} Δx h h h变量,而 x x x常量

    • 正确定位表达式中的变量对于相关推理和证明是重要的
  • 利用本定义求具体函数的导数常使用后一种极限形式

  • 导函数 f ′ ( x ) f'(x) f(x)在点 x 0 x_0 x0的函数值和 f ( x ) f(x) f(x)在点 x 0 x_0 x0的导数值的关系

    • 函数 f ( x ) f(x) f(x) x 0 x_0 x0处的导数 f ′ ( x 0 ) f'(x_0) f(x0)就是导函数 f ′ ( x ) f'(x) f(x)在** x 0 x_0 x0处的取值**: f ′ ( x 0 ) = f ′ ( x ) ∣ x = x 0 f'(x_0)=f'(x)|_{x=x_0} f(x0)=f(x)x=x0

导数定义的应用

  • 用导数定义推导

正整数指数幂函数导数

  • f ( x ) = x n f(x)=x^{n} f(x)=xn, n ∈ N + n\in{\mathbb{N}_{+}} nN+的导数

    • f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim\limits_{h\to{0}}\frac{f(x+h)-f(x)}{h} f(x)=h0limhf(x+h)f(x)= lim ⁡ h → 0 ( x + h ) n − x n h \lim\limits_{h\to{0}}\frac{(x+h)^n-x^{n}}{h} h0limh(x+h)nxn
      • N N N= ( x + h ) n − x n (x+h)^n-x^{n} (x+h)nxn= ( x + h − x ) ∑ i = 1 n ( x + h ) n − i x i − 1 (x+h-x)\sum_{i=1}^{n}(x+h)^{n-i}x^{i-1} (x+hx)i=1n(x+h)nixi1
      • H ( h ) H(h) H(h)= ∑ i = 1 n ( x + h ) n − i x i − 1 \sum_{i=1}^{n}(x+h)^{n-i}x^{i-1} i=1n(x+h)nixi1= ( ( x + h ) n − 1 + ( x + h ) n − 2 x + ⋯ + ( x + h ) x n − 2 + x n − 1 ) ((x+h)^{n-1}+(x+h)^{n-2}x+\cdots+(x+h)x^{n-2}+x^{n-1}) ((x+h)n1+(x+h)n2x++(x+h)xn2+xn1)
      • N = h H ( h ) N=hH(h) N=hH(h)
    • f ′ ( x ) f'(x) f(x)= lim ⁡ h → 0 N h \lim\limits_{h\to{0}}{\frac{N}{h}} h0limhN= lim ⁡ h → 0 h H ( h ) h \lim\limits_{h\to{0}}{\frac{hH(h)}{h}} h0limhhH(h)= lim ⁡ h → 0 H ( h ) \lim\limits_{h\to{0}}{H(h)} h0limH(h)= ∑ i = 1 n lim ⁡ h → 0 ( x + h ) n − i x i − 1 \sum_{i=1}^{n}\lim\limits_{h\to{0}}(x+h)^{n-i}x^{i-1} i=1nh0lim(x+h)nixi1= ∑ i = 1 n x n − 1 \sum_{i=1}^{n}x^{n-1} i=1nxn1= n x n − 1 nx^{n-1} nxn1
    • 或者 H ( h ) H(h) H(h)= n x n − 1 + n ( n − 1 ) 2 x n − 2 h + ⋯ + h n − 1 nx^{n-1}+\frac{n(n-1)}{2}x^{n-2}h+\cdots+h^{n-1} nxn1+2n(n1)xn2h++hn1, lim ⁡ h → 0 H ( h ) = n x n − 1 \lim\limits_{h\to{0}}H(h)=nx^{n-1} h0limH(h)=nxn1
  • 对于实指数幂,需要更一般的方法

幂函数导数

  • f ( x ) = x μ , ( μ ∈ R ) f(x)=x^{\mu},(\mu\in\mathbb{R}) f(x)=xμ,(μR)
  • 幂函数的定义域和常数 μ \mu μ有关,假设 x x x x μ x^{\mu} xμ的定义域内且 x ≠ 0 x\neq{0} x=0
  • f ( x + h ) − f ( x ) h \frac{f(x+h)-f(x)}{h} hf(x+h)f(x)= ( x + h ) μ − x μ h \frac{(x+h)^{\mu}-x^{\mu}}{h} h(x+h)μxμ= 1 h x μ ( ( x + h x ) μ − 1 ) \frac{1}{h}x^{\mu}((\frac{x+h}{x})^{\mu}-1) h1xμ((xx+h)μ1)= x μ − 1 ⋅ ( 1 + h x ) μ − 1 h x x^{\mu-1}\cdot\frac{(1+\frac{h}{x})^{\mu}-1}{\frac{h}{x}} xμ1xh(1+xh)μ1
  • f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim\limits_{h\to{0}}\frac{f(x+h)-f(x)}{h} f(x)=h0limhf(x+h)f(x)= lim ⁡ h → 0 x μ − 1 ⋅ ( 1 + h x ) μ − 1 h x \lim\limits_{h\to{0}}x^{\mu-1}\cdot\frac{(1+\frac{h}{x})^{\mu}-1}{\frac{h}{x}} h0limxμ1xh(1+xh)μ1= x μ − 1 lim ⁡ h → 0 ( 1 + h x ) μ − 1 h x x^{\mu-1}\lim\limits_{h\to{0}}\frac{(1+\frac{h}{x})^{\mu}-1}{\frac{h}{x}} xμ1h0limxh(1+xh)μ1= μ x μ − 1 \mu{x^{\mu{-1}}} μxμ1
    • 其中用到了 ( 1 + x ) α − 1 ∼ α x (1+x)^{\alpha}-1\sim{\alpha{x}} (1+x)α1αx替换

对数函数的导数推导

  • f ( x ) = log ⁡ a x f(x)=\log_a x f(x)=logax, ( a > 0 , a ≠ 1 ) (a>0,a\neq{1}) (a>0,a=1)的导函数

  • 方法1:

    • f ′ ( x ) f'(x) f(x)= lim ⁡ h → 0 f ( x + h ) − f ( x ) h \lim\limits_{h\to{0}}\frac{f(x+h)-f(x)}{h} h0limhf(x+h)f(x)= lim ⁡ h → 0 1 h log ⁡ a ( x + h x ) \lim\limits_{h\to 0}\frac{1}{h}{\log_a(\frac{x+h}{x})} h0limh1loga(xx+h)= lim ⁡ h → 0 1 h log ⁡ a ( 1 + h x ) \lim\limits_{h\to 0}{\frac{1}{h}\log_a{(1+\frac{h}{x})}} h0limh1loga(1+xh)= log ⁡ a lim ⁡ h → 0 ( 1 + 1 x h ) 1 h \log_{a}{\lim\limits_{h\to{0}}}{(1+\frac{1}{x}h)^{\frac{1}{h}}} logah0lim(1+x1h)h1

      • 应用了连续复合函数极限运算法则
    • u = ϕ ( h ) = ( 1 + 1 x h ) 1 h u=\phi(h)=(1+\frac{1}{x}h)^{\frac{1}{h}} u=ϕ(h)=(1+x1h)h1,则 u 0 u_0 u0= lim ⁡ h → 0 ϕ ( h ) \lim\limits_{h\to{0}}{\phi(h)} h0limϕ(h)= e 1 x e^{\frac{1}{x}} ex1

      • 该极限是 1 ∞ 1^\infin 1类型;由第二重要极限的推广公式得到: A = lim ⁡ h → 0 h x 1 h A=\lim\limits_{h\to 0}\frac{h}{x}\frac{1}{h} A=h0limxhh1= 1 x \frac{1}{x} x1,即 lim ⁡ h → 0 ϕ ( h ) = e A = e 1 x \lim\limits_{h\to{0}}{\phi(h)}=e^{A}=e^{\frac{1}{x}} h0limϕ(h)=eA=ex1
    • f ′ ( x ) f'(x) f(x)= log ⁡ a e 1 x \log_{a}e^{\frac{1}{x}} logaex1,根据换底公式得到 log ⁡ a e 1 x = ln ⁡ e 1 x ln ⁡ a \log_ae^{\frac{1}{x}}=\frac{\ln e^{\frac{1}{x}}}{\ln a} logaex1=lnalnex1= 1 x 1 ln ⁡ a \frac{1}{x}\frac{1}{\ln a} x1lna1

  • 方法2: f ′ ( x ) f'(x) f(x)= lim ⁡ h → 0 1 h log ⁡ a ( 1 + h x ) \lim\limits_{h\to 0}{\frac{1}{h}\log_a{(1+\frac{h}{x})}} h0limh1loga(1+xh)= lim ⁡ h → 0 1 x x h log ⁡ a ( 1 + h x ) \lim\limits_{h\to 0}{\frac{1}{x}\frac{x}{h}\log_a{(1+\frac{h}{x})}} h0limx1hxloga(1+xh)= 1 x lim ⁡ h → 0 log ⁡ a ( 1 + h x ) h x \frac{1}{x}\lim\limits_{h\to 0}\frac{\log_a{(1+\frac{h}{x})}}{\frac{h}{x}} x1h0limxhloga(1+xh)

    • = 1 x lim ⁡ h → 0 1 ln ⁡ a h x h x \frac{1}{x}\lim\limits_{h\to 0}\frac{\frac{1}{\ln{a}}\frac{h}{x}}{\frac{h}{x}} x1h0limxhlna1xh= 1 x 1 ln ⁡ a \frac{1}{x}\frac{1}{\ln{a}} x1lna1

切线方程和法线方程

  • 根据导数的几何意义和直线的点斜式方程,可知曲线 y = f ( x ) y=f(x) y=f(x) M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0)处的切线方程为 y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0=f'(x_0)(x-x_0) yy0=f(x0)(xx0)
  • 过切点 M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0)且域切线垂直的直线叫做曲线 y = f ( x ) y=f(x) y=f(x)在点 M M M处的法线,若 f ′ ( x 0 ) ≠ 0 f'(x_0)\neq{0} f(x0)=0,
    • 法线的斜率为 − 1 f ′ ( x 0 ) -\frac{1}{f'(x_0)} f(x0)1
    • 法线方程为 y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) y-y_0=-\frac{1}{f'(x_0)}(x-x_0) yy0=f(x0)1(xx0)

  • y = 1 x y=\frac{1}{x} y=x1在点 ( 1 2 , 2 ) (\frac{1}{2},2) (21,2)处的切线,法线方程
    • 切线斜率为 k 1 = y ′ ∣ x = 1 2 k_1=y'|_{x=\frac{1}{2}} k1=yx=21= − 1 x 2 ∣ x = 1 2 -\frac{1}{x^2}|_{x=\frac{1}{2}} x21x=21= − 4 -4 4
    • 切线方程: y − 2 = − 4 ( x − 1 2 ) y-2=-4(x-\frac{1}{2}) y2=4(x21),即 4 x + y − 4 = 0 4x+y-4=0 4x+y4=0
    • 法线斜率 k 2 = 1 4 k_2=\frac{1}{4} k2=41
    • 法线方程: y − 2 = 1 4 ( x − 1 2 ) y-2=\frac{1}{4}(x-\frac{1}{2}) y2=41(x21);即 2 x − 8 y + 15 = 0 2x-8y+15=0 2x8y+15=0

  • 求曲线 y = x 3 2 y=x^{\frac{3}{2}} y=x23的通过 Q ( 0 , − 4 ) Q(0,-4) Q(0,4)的切线方程
方法1
  • 设切点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0),则切线的斜率为 f ′ ( x 0 ) f'(x_0) f(x0)= 3 2 x ∣ x = x 0 \frac{3}{2}\sqrt{x}|_{x=x_0} 23x x=x0= 3 2 x 0 \frac{3}{2}\sqrt{x_0} 23x0
  • 所求切线方程可设为 y − y 0 = 3 2 x 0 ( x − x 0 ) y-y_0=\frac{3}{2}\sqrt{x_0}(x-x_0) yy0=23x0 (xx0)
  • Q Q Q在切线上有方程 − 4 − y 0 = 3 2 x 0 ( 0 − x 0 ) -4-y_0=\frac{3}{2}\sqrt{x_0}(0-x_0) 4y0=23x0 (0x0)
  • P P P在曲线 y y y上有 y 0 = x 0 3 2 y_0=x_0^{\frac{3}{2}} y0=x023
  • 解得 x 0 = 4 x_0=4 x0=4, y 0 = 8 y_0=8 y0=8,所以切线方程为 3 x − y − 4 = 0 3x-y-4=0 3xy4=0
方法2
  • 设曲线 y y y上点 P ( x 0 , x 0 3 2 ) P(x_0,x_0^{\frac{3}{2}}) P(x0,x023)为切点
  • 则该处切线斜率为 k = f ′ ( x 0 ) = 3 2 x ∣ x = x 0 k=f'(x_0)=\frac{3}{2}\sqrt{x}|_{x=x_0} k=f(x0)=23x x=x0= 3 2 x 0 \frac{3}{2}\sqrt{x_0} 23x0
  • P , Q P,Q P,Q所在直线的斜率为, k = x 0 3 2 − ( − 4 ) x 0 − 0 k=\frac{x_0^{\frac{3}{2}}-(-4)}{x_0-0} k=x00x023(4)
  • 从而有方程 3 2 x 0 \frac{3}{2}\sqrt{x_0} 23x0 = x 0 3 2 + 4 x 0 \frac{x_0^{\frac{3}{2}}+4}{x_0} x0x023+4
  • 解得 x 0 = 4 x_0=4 x0=4, y 0 = 4 3 2 = 2 3 = 8 y_0=4^{\frac{3}{2}}=2^{3}=8 y0=423=23=8
  • 方程为 3 x − y − 4 = 0 3x-y-4=0 3xy4=0

函数的可导性和连续性的关系

  • 若函数 y = f ( x ) y=f(x) y=f(x) x x x可导,则函数在该点处必连续
  • 反之则不成立
    • 例如 y = f ( x ) = x 3 y=f(x)=\sqrt[3]{x} y=f(x)=3x ,其在 ( − ∞ , + ∞ ) (-\infin,+\infin) (,+)连续,但在 x = 0 x=0 x=0处却不可导,因为 lim ⁡ h → 0 h 3 − 0 h \lim\limits_{h\to{0}}\frac{\sqrt[3]{h}-0}{h} h0limh3h 0= lim ⁡ h → 0 1 / h 2 3 \lim\limits_{h\to{0}}1/h^{\frac{2}{3}} h0lim1/h32= + ∞ +\infin +,即不可导,即 y = x 3 y=\sqrt[3]{x} y=3x ( 0 , 0 ) (0,0) (0,0)处有垂直于 x x x轴的切线 x = 0 x=0 x=0
  • 连续是可导的必要不充分条件

证明

  • 设函数 y = f ( x ) y=f(x) y=f(x)在点 x x x处可导,即 lim ⁡ Δ x → 0 Δ y Δ x \lim\limits_{\Delta{x}\to{0}}\frac{\Delta{y}}{\Delta{x}} Δx0limΔxΔy= f ′ ( x ) f'(x) f(x)存在,并由极限和无穷小的关系可知 Δ y Δ x \frac{\Delta{y}}{\Delta{x}} ΔxΔy= f ′ ( x ) + α f'(x)+\alpha f(x)+α(1)(其中 α → 0 ( Δ x → 0 ) \alpha\to{0(\Delta{x}\to{0})} α0(Δx0))

  • 将式(1)变形(两边同时乘以 Δ x \Delta{x} Δx)得 Δ y = f ′ ( x ) Δ x + α Δ x \Delta{y}=f'(x)\Delta{x+\alpha\Delta{x}} Δy=f(x)Δx+αΔx

  • 从而 Δ y → 0 ( Δ x → 0 ) \Delta{y}\to{0}(\Delta{x}\to{0}) Δy0(Δx0),因此 y = f ( x ) y=f(x) y=f(x)在点 x x x处连续

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值