EM@不等式的基本性质

abstract

  • 不等式的基本性质

  • 这些不等式是解不等式和证明不等式的基础和出发点

三种基本大小关系

  • a > b a>b a>b ⇔ \Leftrightarrow a − b > 0 a-b>0 ab>0
  • a = b a=b a=b ⇔ \Leftrightarrow a − b = 0 a-b=0 ab=0
  • a < b a<b a<b ⇔ \Leftrightarrow a − b < 0 a-b<0 ab<0
  • 上述每种大小关系都有等价的两数(式)差与0的大小关系,简称差形式
  • ⩽ , ⩾ \leqslant,\geqslant ,属于衍生关系,性质分别和 < , > <,> <,>一致

对称性和传递性

  1. 对称: a > b a>b a>b ⇔ \Leftrightarrow b < a b<a b<a

  2. 传递: a > b , b > c ⇒ a > c a>b,b>c\Rightarrow{a>c} a>b,b>ca>c

加减性质

  • 加(减): a > b ⇒ a ± c > b ± c a>b\Rightarrow{a\pm c>b\pm c} a>ba±c>b±c

推论:同向不等式相加仍然同向

  • a > b ; c > d ⇒ a + c > b + d a>b;c>d\Rightarrow{a+c>b+d} a>b;c>da+c>b+d
    • 证明:令 c = d + δ ; δ > 0 c=d+\delta;\delta>0 c=d+δ;δ>0
      • a + c = a + ( d + δ ) > a + d > b + d a+c=a+(d+\delta)>a+d>b+d a+c=a+(d+δ)>a+d>b+d
      • 两个同向不等式相加,所得不等式和原不等式同向)
    • 几何法: a b ab ab表示矩形1的面积, c d cd cd表示矩形2的面积,显然矩形2的面积大

乘除性质

  • a > b ; c > 0 ⇒ a c > b c a>b;c>0\Rightarrow{ac>bc} a>b;c>0ac>bc; a c > b c \frac{a}{c}>\frac{b}{c} ca>cb(1)

  • a > b ; c < 0 ⇒ a c < b c a>b;c<0\Rightarrow{ac<bc} a>b;c<0ac<bc; a c < b c \frac{a}{c}<\frac{b}{c} ca<cb(2)

  • 这两条性质可以构造差形式表达式来证明

    • (1):由于 a > b a>b a>b,所以 a − b > 0 a-b>0 ab>0,又因为 c > 0 c>0 c>0,所以 a c − b c = ( a − b ) c > 0 ac-bc=(a-b)c>0 acbc=(ab)c>0所以 a c > b c ac>bc ac>bc
      • a c − b c = a − b c > 0 \frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}>0 cacb=cab>0,所以 a c > b c \frac{a}{c}>\frac{b}{c} ca>cb
    • ( 2 ) (2) (2):由于 a > b a>b a>b,所以 a − b > 0 a-b>0 ab>0,又因为 c < 0 c<0 c<0,所以 a c − b c = ( a − b ) c < 0 ac-bc=(a-b)c<0 acbc=(ab)c<0所以 a c < b c ac<bc ac<bc
      • a c − b c = a − b c < 0 \frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}<0 cacb=cab<0,所以 a c < b c \frac{a}{c}<\frac{b}{c} ca<cb

同号乘法相关性质

  • 以下主要对 a > b > 0 a>b>0 a>b>0的情况进行讨论
  • 对于 a < b < 0 a<b<0 a<b<0的情况,可以通过 − a > − b > 0 -a>-b>0 a>b>0将问题转换为上一种情况

同向对应乘

  • a > b > 0 a>b>0 a>b>0, c > d > 0 c>d>0 c>d>0,则 a c > b d > 0 ac>bd>0 ac>bd>0
    • 证明:令 c = d + δ , δ > 0 c=d+\delta,\delta>0 c=d+δ,δ>0 a c = a ( d + δ ) = a d + a δ > a d ac=a(d+\delta)=ad+a\delta>ad ac=a(d+δ)=ad+aδ>ad,结论得证
    • 不妨将 a c > b d ac>bd ac>bd称为 a > b ; c > d a>b;c>d a>b;c>d同向对应乘不等式
    • 该结论表明两边都是正数的同向不等式两边分别相乘,所得的不等式和原不等式同向)

幂不等式

正整数幂
  • a > b > 0 ⇒ a n > b n a>b>0\Rightarrow{a^n>b^n} a>b>0an>bn, n ∈ N + n\in\mathbb{N^+} nN+
    • 方法0:根据推论(1),不妨将 a > b a>b a>b a > b a>b a>b的同向对应乘不等式为 a 2 > b 2 a^2>b^2 a2>b2,类似的,对 a > b a>b a>b作其自身的同向对应乘 n n n次,即可得到 a n > b n , n ∈ N + , n > 1 a^n>b^n,n\in\mathbb{N^+},n>1 an>bn,nN+,n>1;而 a 1 > b 1 a^1>b^1 a1>b1显然成立,所以结论可以作 a n > b n , n ∈ N + a^n>b^n,n\in\mathbb{N^+} an>bn,nN+
    • 方法1:用乘方的性质以及作商构造证明,由 a > b > 0 a>b>0 a>b>0有, a n b n = ( a b ) n \frac{a^n}{b^n}=(\frac{a}{b})^n bnan=(ba)n> 1 n 1^n 1n=1, ( n ∈ N + ) (n\in\mathbb{N^+}) (nN+)
    • 方法2:利用二项式定理,令 a = b + δ a=b+\delta a=b+δ, b , δ > 0 b,\delta>0 b,δ>0, a n = ( b + δ ) n a^n=(b+\delta)^n an=(b+δ)n= ∑ i = 0 n b i δ n − i \sum_{i=0}^{n}b^i\delta^{n-i} i=0nbiδni= δ n + ⋯ + b n \delta^n+\cdots+b^{n} δn++bn> b n b^n bn,所以 a n > b n a^n>b^n an>bn, ( n ∈ N + ) (n\in\mathbb{N^+}) (nN+)
    • 方法3:等幂和差公式: a n − b n = ( a − b ) ∑ r 1 + r 2 = n − 1 a r 1 b r 2 a^n-b^n=(a-b)\sum_{r_1+r_2=n-1}a^{r_1}b^{r_2} anbn=(ab)r1+r2=n1ar1br2>0, ( n ∈ N + ) (n\in\mathbb{N^+}) (nN+)
倒数(负1次幂)
  • 倒数( − 1 -1 1次幂): a b > 0 ab>0 ab>0, a < b a<b a<b ⇒ \Rightarrow a − 1 > b − 1 a^{-1}>b^{-1} a1>b1
    • 方法1:构造比较式: y = a − 1 − b − 1 = b − a a b y=a^{-1}-b^{-1}=\frac{b-a}{ab} y=a1b1=abba, ( a b > 0 ) (ab>0) (ab>0),因为 a < b a<b a<b,所以 b − a > 0 b-a>0 ba>0,所以 y > 0 y>0 y>0,即 a − 1 > b − 1 a^{-1}>b^{-1} a1>b1
    • 方法2:可以参考 y = 1 x y=\frac{1}{x} y=x1的单调性(在 ( − ∞ , 0 ) , ( 0 , + ∞ ) (-\infin,0),(0,+\infin) (,0),(0,+)内都是单调递减的)
    • 总结:同号的两个数取倒数后不等关系取反
    • 例如, − 3 < − 2 < 0 -3<-2<0 3<2<0, − 1 3 > − 1 2 -\frac{1}{3}>-\frac{1}{2} 31>21
负数的正整数幂
  • a < b < 0 a<b<0 a<b<0,则 a n , b n a^n,b^n an,bn, n ∈ N + n\in\mathbb{N^{+}} nN+的大小关系:

    • a < b < 0 a<b<0 a<b<0可知, − a > − b > 0 -a>-b>0 a>b>0,再由不等式的正整数幂性质, ( − a ) n > ( − b ) n (-a)^n>(-b)^n (a)n>(b)n
      • n n n是偶数,则 a n > b n a^n>b^n an>bn
      • n n n是奇数,则 − a n > − b n -a^{n}>-b^{n} an>bn,即 a n < b n a^{n}<b^{n} an<bn
    • 例: − 3 < − 2 < 0 -3<-2<0 3<2<0,则 ( − 3 ) 2 > ( − 2 ) 2 (-3)^2>(-2)^2 (3)2>(2)2, ( − 3 ) 3 < ( − 2 ) 3 (-3)^3<(-2)^3 (3)3<(2)3,

    • 例: x < − a < 0 x<-\sqrt a<0 x<a <0,则 − x > a > 0 -x>\sqrt{a}>0 x>a >0 x 2 > a x^2>a x2>a;这一变形将原不等式中的根号消去了

      • 则个过程体现的是 x < − a < 0 x<-\sqrt a<0 x<a <0 ⇒ \Rightarrow x 2 > a x^2>a x2>a,逆命题不成立

      • 原不等式的解集是 x < − a x<-\sqrt{a} x<a ,而消去根号后的不等式解集增加了,还包括 x > a x>\sqrt{a} x>a

正数的负整数幂
  • 0 < a < b 0<a<b 0<a<b,则 a − n > b − n > 0 a^{-n}>b^{-n}>0 an>bn>0, n ∈ N + n\in\mathbb{N_{+}} nN+
    • 0 < a < b 0<a<b 0<a<b可知, a − 1 > b − 1 > 0 a^{-1}>b^{-1}>0 a1>b1>0,所以, a − n > b − n > 0 a^{-n}>b^{-n}>0 an>bn>0
  • 例如, 2 < 3 2<3 2<3, 2 − 2 > 3 − 2 2^{-2}>3^{-2} 22>32(即 1 4 > 1 9 \frac{1}{4}>\frac{1}{9} 41>91)
负数的负整数幂
  • a < b < 0 a<b<0 a<b<0,则 ( − a ) − n > ( − b ) − n > 0 (-a)^{-n}>(-b)^{-n}>0 (a)n>(b)n>0, n ∈ N + n\in\mathbb{N_{+}} nN+
    • 易知 − a > − b > 0 -a>-b>0 a>b>0,即 ( − a ) − n > ( − b ) − n > 0 (-a)^{-n}>(-b)^{-n}>0 (a)n>(b)n>0
      • n n n是偶数,则 a − n > b − n a^{-n}>b^{-n} an>bn
      • n n n是奇数,则 − a − n > − b − n -a^{-n}>-b^{-n} an>bn,即 a − n < b − n a^{-n}<b^{-n} an<bn
    • 例: − 3 < − 2 -3<-2 3<2, ( 2 ) − 2 > ( 3 ) − 2 (2)^{-2}>(3)^{-2} (2)2>(3)2; ( − 2 ) − 3 < ( − 3 ) − 3 (-2)^{-3}<(-3)^{-3} (2)3<(3)3
分数幂(主n次方根)
  • a > b > 0 a>b>0 a>b>0 ⇒ \Rightarrow a n > b n {\sqrt[n]{a}>\sqrt[n]{b}} na >nb , n ∈ N + n\in\mathbb{N^+} nN+
    • 方法1:构造 a n b n = a b n \frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}} nb na =nba > 1 n \sqrt[n]{1} n1 =1,所以 a n > b n \sqrt[n]{a}>\sqrt[n]{b} na >nb , n ∈ N + n\in\mathbb{N^+} nN+
    • 方法2:(反证法)设 a n ⩽ b n {\sqrt[n]{a}\leqslant\sqrt[n]{b}} na nb ,则 ( a n ) n ⩽ ( b n ) n {(\sqrt[n]{a})^{n}\leqslant(\sqrt[n]{b})^{n}} (na )n(nb )n,即 a ⩽ b a\leqslant{b} ab a > b a>b a>b矛盾,所以 a n > b n {\sqrt[n]{a}>\sqrt[n]{b}} na >nb

  • a , b > 0 a,b>0 a,b>0, x < − b a < 0 x<-\sqrt{\frac{b}{a}}<0 x<ab <0,求 y = a − b x − 2 y=a-bx^{-2} y=abx2和0的大小关系

    • y y y中包含了负指数,考虑先判断 x − 2 x^{-2} x2的大小;

    • x < − b a < 0 x<-\sqrt{\frac{b}{a}}<0 x<ab <0 − x > b a > 0 -x>\sqrt{\frac{b}{a}}>0 x>ab >0(转换到正数范围更便于讨论)

    • 由正数范围内不等式负整数次方性质: ( − x ) − 2 < ( b a ) − 2 (-x)^{-2}<(\sqrt{\frac{b}{a}})^{-2} (x)2<(ab )2化简即 x − 2 < ( b a ) − 1 = a b x^{-2}<(\frac{b}{a})^{-1}=\frac{a}{b} x2<(ab)1=ba

    • 对上面的不等式两边乘以 − b < 0 -b<0 b<0,得 − b x − 2 > − a -bx^{-2}>-a bx2>a,再在两边加上 a a a,得 a − b x − 2 > 0 a-bx^{-2}>0 abx2>0

    • y > 0 y>0 y>0

应用

分类讨论

  • 例:已知 a b ≠ 0 ab\neq{0} ab=0, a > b a>b a>b,讨论 1 a , 1 b \frac{1}{a},\frac{1}{b} a1,b1的大小

    • 构造表达式: y = 1 a − 1 b y=\frac{1}{a}-\frac{1}{b} y=a1b1,通过判断 y y y与0的大小关系来判断 1 a , 1 b \frac{1}{a},\frac{1}{b} a1,b1间的大小关系

    • 通分得: y = b − a a b y=\frac{b-a}{ab} y=abba,由 a > b a>b a>b可知 b − a < 0 b-a<0 ba<0,所以

      • { y < 0 , a b > 0 y > 0 , a b < 0 \begin{cases} y<0,&ab>0\\ y>0,&ab<0 \end{cases} {y<0,y>0,ab>0ab<0
    • 所以

      • { 1 a < 1 b , a b > 0 1 a > 1 b , a b < 0 \begin{cases} \frac{1}{a}<\frac{1}{b},&ab>0\\ \frac{1}{a}>\frac{1}{b},&ab<0 \end{cases} {a1<b1,a1>b1,ab>0ab<0

  • 例:讨论 1 a \frac{1}{a} a1, 1 b \frac{1}{b} b1的三类基本大小关系下 a , b a,b a,b满足的条件

    • 如同上例介绍的那样,我们用表达式 y = 1 a − 1 b = b − a a b y=\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab} y=a1b1=abba
  • b − a > 0 b-a>0 ba>0

    • y = b − a a b ; b − a > 0 则 { y > 0 ; i f   a b > 0 y < 0 ; i f   a b < 0 y=\frac{b-a}{ab};b-a>0 \\则 \begin{cases} y>0;if\ ab>0 \\ y<0;if\ ab<0 \\ \end{cases} y=abba;ba>0{y>0;if ab>0y<0;if ab<0
  • b − a < 0 b-a<0 ba<0

    • { y > 0 ; i f   a b < 0 y < 0 ; i f   a b > 0 \begin{cases} y>0;if\ ab<0\\ y<0;if\ ab>0 \end{cases} {y>0;if ab<0y<0;if ab>0
  • 综上:

    • 1 a > 1 b ; { a b > 0 & a < b a b < 0 & a > b 1 a < 1 b ; { a b > 0 & a > b a b < 0 & a < b 1 a = 1 b ; a = b \frac{1}{a}>\frac{1}{b}; \begin{cases} ab>0\&a<b \\ ab<0\&a>b \end{cases} \\ \frac{1}{a}<\frac{1}{b}; \begin{cases} ab>0\&a>b \\ ab<0\&a<b \end{cases} \\ \frac{1}{a}=\frac{1}{b};a=b a1>b1;{ab>0&a<bab<0&a>ba1<b1;{ab>0&a>bab<0&a<ba1=b1;a=b

常用的比较大小的方法

  • 做差法(通用)
  • 作商(注意符号问题)
  • 构造函数单调性,考察单调性

refs

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值