Leetcode 973. K Closest Points to Origin(经典的前K项问题 3种思路)

Leetcode 973. K Closest Points to Origin

题目链接: K Closest Points to Origin

难度:Medium

题目大意:

输入一组点的坐标,求离原点最近的K个点,将这K个点以任意顺序输出。经典的前K项问题。参考高赞回答Three solutions to this classical K-th problem.解释得很详细。

思路:

思路1:

将这些点按照到原点的距离来排序,然后输出前K个点。这种方法需要对所有点进行排序,效率较低。

思路2 :

用优先队列来存储离原点最近的K个点。

思路3:

参考快速排序的思想,找到某个元素使它左边有K个数比它小,效率最高。关于快速排序可参看我的文章快速排序个人小结(交换法与挖坑法)

代码

思路1:
class Solution {
    public int[][] kClosest(int[][] points, int K) {
        Arrays.sort(points,(o1,o2)->o1[0]*o1[0]+o1[1]*o1[1]-(o2[0]*o2[0]+o2[1]*o2[1]));
        return Arrays.copyOfRange(points,0,K);
    }
}
 
思路2:
class Solution {
    public int[][] kClosest(int[][] points, int K) {
         //用优先队列实现
        PriorityQueue<int[]> pq=new PriorityQueue<int[]>((p1,p2)->p2[0]*p2[0]+p2[1]*p2[1]-(p1[0]*p1[0]+p1[1]*p1[1]));//注意优先级与题目要求的相反
        for(int[] p:points){
            pq.offer(p);
            if(pq.size()>K){
                pq.poll();
            }
        }
        int[][] res=new int[K][2];
        for(int i=K-1;i>=0;i--){
            res[i]=pq.poll();
        }//pq弹出的元素从后往前放
        return res;
    }
}
思路3:
class Solution {
    public int[][] kClosest(int[][] points, int K) {
         //用快速排序实现
        int l=0,r=points.length-1;
        
        while(l<=r){
            int mid=helper(points,l,r);
            if(mid==K){
                break;
            }
            else if(mid<K){
                l=mid+1;
            }
            else{
                r=mid-1;
            }
        }
        return Arrays.copyOfRange(points,0,K);
    }
    
    private int helper(int[][] A,int l,int r){
        int[] x=A[l];
        while(l<r){
            while(l<r&&compare(A[r],x)>=0){
                r--;
            }    
            A[l]=A[r];
            while(l<r&&compare(A[l],x)<=0){
                l++;
            }
            A[r]=A[l];
        }
        A[l]=x;
        return l;
    }
    
    private int compare(int[] p1,int[] p2){
        return p1[0]*p1[0]+p1[1]*p1[1]-(p2[0]*p2[0]+p2[1]*p2[1]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值