Deep Forest: Towards an Alternative to Deep Neural Networks (阅读笔记)

文章介绍了深度森林(gcForest)作为一种替代深度神经网络的模型,它克服了深度学习在数据需求、运算性能和训练方面的缺点。gcForest采用级联森林结构,结合多粒度扫描技术,能够在多个尺度上提取特征。实验表明,gcForest在多个任务上的表现与深度神经网络相当,且需要的超参数更少,尤其适用于具有空间关系或连续性特征的数据。
摘要由CSDN通过智能技术生成

This is an original article. Please indicate reference if reproduced.

Introduction

首先,文中阐述了深度神经网络的一些缺陷,主要分为三个方面:
- 数据
- 有监督的深度学习方法通常都需要大量的数据用来训练,即使训练出来的模型是应用在小规模数据的任务上。
- 即使是在获得大量数据的情况下,通常也会面临数据标注的问题,因为大量数据的标注通常花费高昂。
- 运算性能
- 深度神经网络是非常复杂的模型,运算时需要大量的计算资源。
- 太多的超参数。
- 训练
深度神经网络的训练非常讲究技巧,需要多种配置的组合,但是对其进行理论分析却十分困难。

但是,深度神经网络有一个非常重要的能力:表征学习。值得注意的是,为了运用大量数据,学习模型的容量通常都很大,这里尤其是指“深度”。因此,作者推测可以将这种性质用到其他合适的学习模型上,也许能达到相当的效果。所以,本文就将神经元这个基本结构替换成的了决策树。

Cascade Forest Structure

如图1所示,级联森林由一层一层的随机森林构成,特征经过每一层随机森林处理,传到下一层。下面以图1为例进行说明。
- 对于每一层
- 蓝色的是两个完全随机树森林
- 每个完全随机树森林由500棵完全随机树构成
- 在每个结点上随机选择一个特征
- 每棵决策树生成

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最近,对于图神经网络的研究日益深入,引起了广泛关注。图神经网络是一种能够对图数据进行建模和分析的神经网络模型。它可以处理任意结构的图形数据,如社交网络、蛋白质互作网络等。 在过去的几年中,研究者们提出了许多图神经网络的模型和方法。然而,这些方法仍然面临一些挑战,例如有效地处理大型图形数据、学习高质量的图嵌入表示以及推理和预测复杂的图结构属性等。 为了克服这些挑战,研究人员开始通过增加神经网络的深度来探索更深的图神经网络模型。深度模型具有更强大的表达能力和学习能力,可以更好地捕捉图数据中的关系和模式。这些深层图神经网络可以通过堆叠多个图神经网络层来实现。每个图神经网络层都会增加一定的复杂性和抽象级别,从而逐渐提高图数据的表达能力。 除了增加深度外,研究人员还提出了一些其他的改进来进一步提高图神经网络的性能。例如,引入注意力机制可以使模型能够自动地选择重要的节点和边来进行信息传播。此外,研究人员还研究了如何通过引入图卷积操作来增强图数据的局部性,从而提高图神经网络模型的效果。 综上所述,对于更深层的图神经网络的研究将在处理大规模图形数据、学习高质量的图表示以及进行复杂图结构属性的推理方面取得更好的性能。随着深度图神经网络的推广和应用,我们可以预见它将在许多领域,如社交网络分析、推荐系统和生物信息学中发挥重要作用,为我们带来更多的机遇和挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值