【实战精选】基于OpenCV的果实检测与果径测算系统(源码&教程)

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

研究背景与意义

随着农业技术的不断发展,果实的检测和测量对于果树种植和果实质量评估变得越来越重要。果实的检测和测量可以提供重要的信息,如果实的数量、大小、形状和颜色等,这些信息对于果树种植者和果实市场非常有价值。然而,传统的果实检测和测量方法通常需要大量的人力和时间,效率低下且容易出现误差。

近年来,计算机视觉技术的快速发展为果实检测和测量提供了新的解决方案。OpenCV是一个开源的计算机视觉库,具有丰富的图像处理和分析功能,可以用于开发各种视觉应用程序。基于OpenCV的果实检测与果径测算系统可以利用计算机视觉技术自动识别和测量果实,大大提高了果实检测和测量的效率和准确性。

该系统的研究意义主要体现在以下几个方面:

  1. 提高果实检测和测量的效率:传统的果实检测和测量方法通常需要人工操作,耗时且容易出现误差。基于OpenCV的果实检测与果径测算系统可以自动识别和测量果实,大大提高了检测和测量的效率,减少了人力成本。

  2. 提高果实检测和测量的准确性:基于OpenCV的果实检测与果径测算系统可以利用计算机视觉技术对果实进行精确的识别和测量,避免了人为因素对结果的影响,提高了检测和测量的准确性。

  3. 促进果实质量评估和品种改良:果实的数量、大小、形状和颜色等特征对于果实的质量评估和品种改良非常重要。基于OpenCV的果实检测与果径测算系统可以提供丰富的果实特征信息,为果树种植者和果实市场提供准确的果实质量评估和品种改良依据。

  4. 推动农业智能化发展:基于OpenCV的果实检测与果径测算系统是农业智能化发展的重要组成部分。该系统可以自动识别和测量果实,为果树种植者提供决策支持,提高果树种植的智能化水平。

总之,基于OpenCV的果实检测与果径测算系统具有重要的研究意义和应用价值。该系统可以提高果实检测和测量的效率和准确性,促进果实质量评估和品种改良,推动农业智能化发展。未来的研究可以进一步完善该系统的算法和功能,拓展其在果实检测和测量领域的应用。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.视频演示

基于OpenCV的果实检测与果径测算系统_哔哩哔哩_bilibili

4.硬件设计与搭建

视觉识别的信息都来自于图像,所以图像的采集和处理是视觉检测的基础。图像采集工作由光源、镜头、相机共同完成,清晰高质量的图像是视觉检测算法对图像处理分析的前提,故硬件系统的合理设计是极其重要的。

工业相机

工业相机和镜头是图像采集系统中的核心硬件,对柑橘边缘信息和表面信息提取的质量有着绝对的影响作用。
根据检测系统的设计要求,工业相机须及时采集到该工位的图像。根据翻转检测方法的设计思想,利用3台相机对每个柑橘进行三次图像采集,三张图像涵盖柑橘全表面的图像信息。故相机的视野尽量刚好可容纳单个柑橘,过大的视野增加了图像信息的复杂性,增加图像处理的难度。托辗之间工位宽度为114.3mm,由2.1.1小节可知柑橘果径范围在50mm到 85mm 之间,故相机检测的最小视野为85mm×85mm;考虑到机构加工以及装配带来的定位误差,相机的视野适当增大至 100mm×100mm。由《鲜柑橘》(GBT12947-2008)标准可知,果径的分级是以5mm为一分级区间,故其最低精度要求为5mm[31l,本文理论检测精度初步设定为0.5mm,取缺陷点最小面积为10个。
分辨率=缺陷点面积x优野汜出(长叹苋)=2000×2000精度
在这里插入图片描述

计算结果可知工业相机的最小分辨率要求为2000×2000,本文初步选择德国公司生产的Mako G-507C工业相机。相机详细参数如表所示,相机的分辨率、高传输速度以及性价比完全满足系统要求。
在这里插入图片描述

光学镜头是相机不可缺少的部分,其将物体的光学图像投射到相机CMOS靶面上。相机镜头的选择主要考虑CMOS传感器尺寸、视场范围、以及焦距。镜头的像场尺寸需大于等于相机的传感器尺寸。相机已经确定,故镜头靶面也确定。视场范围由物距来决定,故需确定镜头焦距。镜头成像光路原理如图所示,物距、相距以及焦距之间关系如式。
在这里插入图片描述

式中:f代表焦距,u代表物距,v代表相距。
在这里插入图片描述
另外,焦距、传感器尺寸、视场宽度以及工作距离之间有如下关系:
在这里插入图片描述

式中:D为工作距离,h为传感器尺寸,H为视场宽度。
由上文可知视野宽度为100mm,CMOS尺寸长约7mm,相机工作高度大约500mm,代入公式得f=35mm。基于以上计算分析可知焦距为35mm的Computer M3520-MPW2镜头可适配相机,镜头详细参数如表。
在这里插入图片描述
在这里插入图片描述

光源及打光方式实验分析

在图像采集中,外界自然光非常不稳定且不可控,光源的选择对成像质量有着至关重要的作用。适合的光源以及打光方式可增强图像的质量,突出检测对象特征及细节,增强检测目标与其背景的对比度;避免背景干扰,便于图像处理算法对检测对象的提取分析。不同的工作场景适用不同的照明方案,以降低噪声对目标的干扰。需针对实际工作场景进行多种光照实验来设计照明方案,最终达到最佳图像质量。
机器视觉中常用的光源主要为LED 灯、荧光灯、以及卤素灯,这些光源光线均匀明亮。本文视觉检测对象主要为柑橘的尺寸和其表面缺陷。需要图像质量优秀,边缘清晰,便于分割;呈现出来的图像色彩区分明显,便于辨别表皮上的缺陷。本文采用成本低、寿命长、稳定性好的LED条形灯管作为照明光源,纳秒级响应速度比其他光源更快,方便调节。如图4.4利用LED条形灯管搭建光学平台,利用纸板搭建封闭黑暗无光的空间,根据被检测物品进行打光实验。
在这里插入图片描述

光源打光方式对提高图像质量有至关重要的作用,需要针对检测目标选择合适的打光效果,在复杂工作环境中降低噪声突显出检测对象重要特征,并对不需要的特征进行抑制。前向照明和背向照明[32,33]是光照系统中最常见的打光方法。
本文的检测重点在于轮廓尺寸测量和柑橘表面信息;故不考虑背向照明的方式,采用前向照明。前向照明主要方式有直接照明和漫反射照明,将两种打光方式在光照实验平台上进行打光效果验证。经过打光方式实验分析发现,柑橘为类椭球形,四周边缘曲率较大且柑橘表面打蜡;直接照明采集的图像局部区域由于镜面反光而出现亮斑,其四周相比较暗,后续对柑橘表面缺陷特征信息的提取识别造成困难;如图实验所示,柑橘中心区域出现大片亮斑。而漫反射照明方式利用灯表面附有漫射板,使得LED灯发出的光线均匀柔和,如图实验所示,柑橘表面清晰,其光照效果均匀柔和,表面相较而言未出现明显的亮斑。由上综合可知,在实验分析柑橘光照成像的特性后,从照明强度、目标对比度、均匀性及鲁棒性等方面考虑后,本文采用LED灯带作为光源,在漫射照明的打光方式下对柑橘进行图像采集,避免后续图像处理算法的复杂性。
在这里插入图片描述

5.核心代码讲解

5.1 contours_d.py

根据代码中的功能,可以将其封装为一个名为FruitAnalyzer的类。该类包含以下方法:



class FruitAnalyzer:
    def __init__(self, image_path):
        self.image_path = image_path

    def find_contours(self, edges):
        """查找并返回边缘检测后的轮廓"""
        contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        return contours

    def measure_diameter(self
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值