1.研究背景与意义
项目参考AAAI Association for the Advancement of Artificial Intelligence
研究背景与意义
随着油气管道设备的广泛应用,油气泄露问题已经成为一个严重的环境和安全隐患。油气泄露不仅会造成环境污染,还可能引发火灾、爆炸等严重事故,对人们的生命财产安全造成威胁。因此,开发一种高效准确的油气管道设备泄露检测系统具有重要的现实意义。
目前,深度学习在计算机视觉领域取得了巨大的成功,特别是目标检测方面。YOLO(You Only Look Once)是一种非常流行的实时目标检测算法,其快速准确的特点使其在许多应用中得到广泛应用。然而,YOLO算法在处理小目标和密集目标时存在一定的困难,这在油气管道设备泄露检测中尤为突出。
为了解决这个问题,本研究提出了一种改进的YOLOv8算法,该算法融合了可变形大核注意力D-LKA-Attention。可变形大核注意力是一种新颖的注意力机制,可以自适应地调整感受野的大小和形状,从而更好地适应不同大小和形状的目标。通过引入D-LKA-Attention,改进的YOLOv8算法可以更好地处理小目标和密集目标,提高油气管道设备泄露检测的准确性和效率。
本研究的意义主要体现在以下几个方面:
首先,改进的YOLOv8算法能够提高油气管道设备泄露检测的准确性。传统的YOLO算法在处理小目标和密集目标时容易出现漏检和误检的问题,而引入D-LKA-Attention后,改进的算法可以更好地适应不同大小和形状的目标,提高检测的准确性。
其次,改进的YOLOv8算法能够提高油气管道设备泄露检测的效率。由于油气管道设备泄露检测需要实时性,因此算法的速度至关重要。改进的算法通过引入可变形大核注意力,可以更好地适应不同大小和形状的目标,减少不必要的计算量,提高检测的速度。
此外,改进的YOLOv8算法还具有较强的泛化能力和适应性。油气管道设备泄露检测场景复杂多变,目标的大小和形状各异,传统的目标检测算法往往难以适应。而改进的算法通过引入可变形大核注意力,可以自适应地调整感受野的大小和形状,更好地适应不同场景下的目标检测需求。
综上所述,改进的YOLOv8算法融合可变形大核注意力D-LKA-Attention的油气管道设备泄露检测系统具有重要的现实意义。它可以提高油气管道设备泄露检测的准确性和效率,具有较强的泛化能力和适应性,对保障人们的生命财产安全具有重要的意义。
2.图片演示



3.视频演示
【改进YOLOv8】融合可变形大核注意力D-LKA-Attention的油气管道设备泄露检测系统_哔哩哔哩_bilibili
4.数据集的采集&标注和整理
图片的收集
首先,我们需要收集所需的图片。这可以通过不同的方式来实现,例如使用现有的公开数据集OilDatasets。

labelImg是一个图形化的图像注释工具,支持VOC和YOLO格式。以下是使用labelImg将图片标注为VOC格式的步骤:
(1)下载并安装labelImg。
(2)打开labelImg并选择“Open Dir”来选择你的图片目录。
(3)为你的目标对象设置标签名称。
(4)在图片上绘制矩形框,选择对应的标签。
(5)保存标注信息,这将在图片目录下生成一个与图片同名的XML文件。
(6)重复此过程,直到所有的图片都标注完毕。
由于YOLO使用的是txt格式的标注,我们需要将VOC格式转换为YOLO格式。可以使用各种转换工具或脚本来实现。
下面是一个简单的方法是使用Python脚本,该脚本读取XML文件,然后将其转换为YOLO所需的txt格式。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
classes = [] # 初始化为空列表
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('./label_xml\%s.xml' % (image_id), encoding='UTF-8')
out_file = open('./label_txt\%s.txt' % (image_id), 'w') # 生成txt格式文件
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
cls = obj.find('name').text
if cls not in classes:
classes.append(cls) # 如果类别不存在,添加到classes列表中
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
xml_path = os.path.join(CURRENT_DIR, './label_xml/')
# xml list
img_xmls = os.listdir(xml_path)
for img_xml in img_xmls:
label_name = img_xml.split('.')[0]
print(label_name)
convert_annotation(label_name)
print("Classes:") # 打印最终的classes列表
print(classes) # 打印最终的classes列表
整理数据文件夹结构
我们需要将数据集整理为以下结构:
-----data
|-----train
| |-----images
| |-----labels
|
|-----valid
| |-----images
| |-----labels
|
|-----test
|-----images
|-----labels
确保以下几点:
所有的训练图片都位于data/train/images目录下,相应的标注文件位于data/train/labels目录下。
所有的验证图片都位于data/valid/images目录下,相应的标注文件位于data/valid/labels目录下。
所有的测试图片都位于data/test/images目录下,相应的标注文件位于data/test/labels目录下。
这样的结构使得数据的管理和模型的训练、验证和测试变得非常方便。
模型训练
Epoch gpu_mem box obj cls labels img_size
1/200 20.8G 0.01576 0.01955 0.007536 22 1280: 100%|██████████| 849/849 [14:42<00:00, 1.04s/it]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00, 2.87it/s]
all 3395 17314 0.994 0.957 0.0957 0.0843
Epoch gpu_mem box obj cls labels img_size
2/200 20.8G 0.01578 0.01923 0.007006 22 1280: 100%|██████████| 849/849 [14:44<00:00, 1.04s/it]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00, 2.95it/s]
all 3395 17314 0.996 0.956 0.0957 0.0845
Epoch gpu_mem box obj cls labels img_size
3/200 20.8G 0.01561 0.0191 0.006895 27 1280: 100%|██████████| 849/849 [10:56<00:00, 1.29it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|███████ | 187/213 [00:52<00:00, 4.04it/s]
all 3395 17314 0.996 0.957 0.0957 0.0845
5.核心代码讲解
5.2 predict.py
class DetectionPredictor(BasePredictor):
def postprocess(self, preds, img, orig_imgs):
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes)
if not isinstance(orig_imgs, list):
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i]
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results
这个程序文件是一个名为predict.py的文件,它是一个用于预测基于检测模型的类DetectionPredictor的定义。这个类继承自BasePredictor类,用于基于检测模型进行预测。
这个文件使用了Ultralytics YOLO库,它是一个基于AGPL-3.0许可的开源项目。
这个文件中的DetectionPredictor类有一个postprocess方法,用于对预测结果进行后处理,并返回一个Results对象的列表。在postprocess方法中,预测结果经过了非最大抑制(non_max_suppression)处理,同时进行了一些其他的处理操作,如将预测框的坐标进行缩放等。
这个文件还包含了一个示例代码,展示了如何使用DetectionPredictor类进行预测。示例代码中使用了yolov8n.pt模型,并指定了输入数据的来源。
总之,这个程序文件是一个用于预测基于检测模型的类DetectionPredictor的定义,它使用了Ultralytics YOLO库,并提供了一个示例代码来演示如何使用这个类进行预测。
5.3 train.py
from copy import copy
import numpy as np
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.train

最低0.47元/天 解锁文章
9299

被折叠的 条评论
为什么被折叠?



