目录
Machine learning到Machin teaching
CAM算法
弱监督:用分类数据集去训练定位模型

图1 不同标签下 网络关注的特点
CAM算法的精妙之处
- 对深度学习实现可解释性分析、显著性分析
- 可扩展性强,后续衍生出各种基于CAM的算法
- 每张图片、每个类别,都能生成CAM热力图
- 弱监督定位︰图像分类模型解决定位问题
- 潜在的“注意力机制”
- 使得Machine
本文介绍了CAM算法在深度学习中的应用,探讨其精妙之处和限制,包括其在弱监督定位中的作用,以及如何通过全局平均池化层进行特征权重计算。同时提到了SqueezeNet作为轻量化网络的优势,并引入了从Machine Learning到Machine Teaching的概念,讨论在细粒度识别任务中的潜力。
目录
Machine learning到Machin teaching
弱监督:用分类数据集去训练定位模型

图1 不同标签下 网络关注的特点
690
406
285

被折叠的 条评论
为什么被折叠?