导论
这门课学什么

通过坦克的故事得知:训练集和测试集一定要来源同一个分布
现代的机器学习和人工智能都是统计学习,统计学习用大量的数据和经验去训练出算法,让算法拟合出某个决策边界或者数据分布;若是分类,就拟合出一个边界把两类样本分开;若是回归。就拟合一个曲线去拟合原有的样本。但我们无法得知高维空间的(非线性非凸)决策边界和数据分析长什么样子。

于是对于未知我们提出疑问:
《可解释人工智能公开课》第一章导论中,探讨了机器学习的统计学习方法,强调训练集和测试集应来自同一分布。现代AI是黑盒子,可解释AI成为了解决这一问题的方向。课程将关注KNN、逻辑回归、线性回归和决策树等可解释模型,同时指出CNN的解释性挑战。通过代码示例展示了图像分类的可解释性分析。
导论
这门课学什么

通过坦克的故事得知:训练集和测试集一定要来源同一个分布
现代的机器学习和人工智能都是统计学习,统计学习用大量的数据和经验去训练出算法,让算法拟合出某个决策边界或者数据分布;若是分类,就拟合出一个边界把两类样本分开;若是回归。就拟合一个曲线去拟合原有的样本。但我们无法得知高维空间的(非线性非凸)决策边界和数据分析长什么样子。

于是对于未知我们提出疑问:
1187

被折叠的 条评论
为什么被折叠?