题目链接:http://poj.org/problem?id=3262点击打开链接
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 7870 | Accepted: 3175 |
Description
Farmer John went to cut some wood and left N (2 ≤ N ≤ 100,000) cows eating the grass, as usual. When he returned, he found to his horror that the cluster of cows was in his garden eating his beautiful flowers. Wanting to minimize the subsequent damage, FJ decided to take immediate action and transport each cow back to its own barn.
Each cow i is at a location that is Ti minutes (1 ≤ Ti ≤ 2,000,000) away from its own barn. Furthermore, while waiting for transport, she destroys Di (1 ≤ Di ≤ 100) flowers per minute. No matter how hard he tries, FJ can only transport one cow at a time back to her barn. Moving cow i to its barn requires 2 × Ti minutes (Ti to get there and Ti to return). FJ starts at the flower patch, transports the cow to its barn, and then walks back to the flowers, taking no extra time to get to the next cow that needs transport.
Write a program to determine the order in which FJ should pick up the cows so that the total number of flowers destroyed is minimized.
Input
Lines 2.. N+1: Each line contains two space-separated integers, Ti and Di, that describe a single cow's characteristics
Output
Sample Input
6 3 1 2 5 2 3 3 2 4 1 1 6
Sample Output
86
Hint
Source
给你一群牛的赶回家的时间和每分钟踩花的数量 让你求最少的踩花数
从整体来看可以知道 将所有牛赶回去的时间固定 因此我们需要将每分钟踩花最多 也就是破坏力最强的牛先赶回家
因此计算出每头牛的破坏力然后从大到小排序赶回家即可
其他博客有分d/t与t/d 不太清楚 觉得这样思考就很合理
注意两个计算方式的排序顺序不同
#include <iostream>
#include <stdio.h>
#include <limits.h>
#include <stack>
#include <algorithm>
#include <queue>
#include <string.h>
#include <set>
using namespace std;
struct xjy
{
double k;
int t;
int d;
bool operator < (const xjy &r)const
{
return k<r.k;
}
};
vector <xjy > s;
int main()
{
int n;
long long int sum=0;
long long int ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
xjy mid;
scanf("%d%d",&mid.t,&mid.d);
mid.k=mid.d*1.0/mid.t;
s.push_back(mid);
sum+=mid.d;
}
sort(s.begin(),s.end());
reverse(s.begin(),s.end());
for(int i=0;i<s.size();i++)
{
sum-=s[i].d;
ans+=(2*s[i].t*sum);
}
cout << ans;
}