2011 Asia Dalian Regional Contest

本文解析并实现了三道算法题目,包括字符转换、序列构造及数论问题,通过具体示例展示了解题思路与代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D - Hexadecimal View

題意

把一行字符轉換成16進制的ASCAL碼,每行16個字符,倆倆間空格,還要輸出十六進制的行號。並在最右面輸出該行的代表的字符串,大寫換消小寫,小寫換大寫。

思路

模擬唄,兩位16進制可以用 %2x 直接輸出,但是行號有前導靈所以得自己寫。

code

讀一行直到文件末尾:

while (gets(str) != NULL) {

}

E - Number String

題意

告訴一個序列的相鄰的兩個數字的增減關係,“I”表示上升,“D”表示下降,“?”表示不確定,序列的數值在1~n+1。問有多少中序列滿足這種增減關係。 (n1000)

思路

dp唄,一開始想的是dp[i][j]表示第i個數字的值是j的方案數。然而這會出現重複的數字。轉變思路位dp[i][j]表示第i個數字的是排第j的方案數。我們並不需要知道具體的大小。只需要知道它在前i個數字里排第幾了。
如果i-1 到i是上升,要第i個數字排第j大的話,第i-1個數字就只能排(1 ~ j-1),

dp[i][j]=k=1j1dp[i1][k]
如果是下降的,第i-1個數字必須排在(j ~ i),
dp[i][j]=k=jidp[i1][k]
如果是不確定的話那麼第i-1個數的排位就是隨意的了
dp[i][j]=k=1idp[i1][k]
用sum記錄和就可以兩重循環搞定了。還有注意一些邊界情況。

code

#include <bits/stdc++.h>
using namespace std;

#define MAXN  1000+5
#define MOD   1000000007

char str[MAXN];
long long dp[MAXN][MAXN];


int main () {
    for (; scanf ("%s", str+1) == 1; ) {
        int n = strlen(str+1);

        dp[0][1] = 1;

        for (int i=1; i<=n; i++) {
            long long sum = 0;
            if (str[i] == 'I') {
                sum = dp[i-1][1];
                dp[i][1] = 0;
                for (int j=2; j<=i+1; j++) {
                    dp[i][j] = sum;
                    sum = (sum + dp[i-1][j]) % MOD;
                }
            }
            else if (str[i] == 'D') {
                sum = 0;
                dp[i][i+1] = 0;
                for (int j=i; j>=0; j--) {
                    sum = (sum + dp[i-1][j]) % MOD;
                    dp[i][j] = sum;
                }
            }
            else {
                for (int j=1; j<=i; j++) {
                    sum = (sum + dp[i-1][j]) % MOD;
                }
                for (int j=1; j<= i+1; j++) {
                    dp[i][j] = sum;
                }
            }
        }

        int ans = 0;
        for (int i=1; i<=n+1; i++) {
            ans = (ans + dp[n][i]) % MOD;
        }

        printf ("%d\n", ans);
    }
    return 0;
}

I - The Boss on Mars

題意

求小於n個並且於n互素的素的四次方的和。 (n108)

思路

首先,有個公式:

_f(n)=14+24+34+...+n4=6n5+15n4+10n3n30

直接計算是不可能的,因爲n有可能是個大素數,然後所有的比他小的數都和他互素。而不互素的數相對好求,就是其素因子的倍數,所以可以求出總的然後從中減去不互素的。若n存在一個素因子p,則其倍數均不與n互素,共有n/p個數。其四次方的和爲

p4+(2p)4+(3p)4+...+(n/pp)4=p4(14+24+34+...+(n/p)4)=p4_f(n/p)

於是我們可以處理楚n的素因子。個數好像在10個內吧?但是這樣還有一個問題,就是會重複計算某些數。所以要用容斥原理搞一下。除法要用到逆元。還有n等於1的時候要特判。

#include <bits/stdc++.h>
using namespace std;

long long MOD = 1000000007L; 

long long n;

long long power(long long n, long long p) {
    long long res = 1;
    while (p) {
        if (p & 1) res = (res * n) % MOD;
        n = (n * n) % MOD;
        p >>= 1;
    }
    return res;
}

long long Inv(long long a) {
    return power(a, MOD-2);
}

long long p[15], _cnt;
void div(long long s) {
    _cnt = 0;

    for (int i=2; i*i<=s; i++) {
        if (s % i != 0) continue;
        while (s % i == 0) s /= i;
        p[_cnt++] = (long long)i;
    }
    if (s != 1) p[_cnt++] = s;
}

long long _f(long long n, long long p) {
    return power(n, p);
}

long long calu(int k) {
    // cout << _f(1,5) << endl;
    long long res = 0;
    res = (res + (6 * (_f(k, 5))) % MOD) % MOD;
    res = (res + (15 * (_f(k, 4))) % MOD) % MOD;
    res = (res + (10 * (_f(k, 3))) % MOD) % MOD;

    // cout <<"res: " <<  res << endl;
    res = (res + MOD - k) % MOD;
    res = (res * Inv(30L)) % MOD;

    return res;
}


long long _get(long long _s) {
    long long _r = 1;
    int _c = 0;
    for (int i=0; i<_cnt; i++) {
        if (((_s >> i) & 1) == 1) {
            _r = (_r * p[i]) % MOD;
            _c++;
        }
    }
    // cout << _r << endl;

    long long res = (_f(_r, 4) * calu(n / _r)) % MOD;
    if (_c & 1) return res;
    else return  (MOD - res) % MOD;
}

int main () {
    int T;
    scanf ("%d", &T);
    while (T--) {
        scanf ("%I64d", &n);
        if (1 == n)  {cout << 0 << endl; continue;}
        div(n);
        long long ans = 0;
        for (int s=1; s<(1 << _cnt); s++) {
            ans = (ans + _get(s)) % MOD;
        }

        ans = (calu(n) - ans + 10 * MOD) % MOD;

        printf ("%I64d\n", ans);
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值