D - Hexadecimal View
題意
把一行字符轉換成16進制的ASCAL碼,每行16個字符,倆倆間空格,還要輸出十六進制的行號。並在最右面輸出該行的代表的字符串,大寫換消小寫,小寫換大寫。
思路
模擬唄,兩位16進制可以用 %2x 直接輸出,但是行號有前導靈所以得自己寫。
code
讀一行直到文件末尾:
while (gets(str) != NULL) {
}
E - Number String
題意
告訴一個序列的相鄰的兩個數字的增減關係,“I”表示上升,“D”表示下降,“?”表示不確定,序列的數值在1~n+1。問有多少中序列滿足這種增減關係。 (n≤1000)
思路
dp唄,一開始想的是dp[i][j]表示第i個數字的值是j的方案數。然而這會出現重複的數字。轉變思路位dp[i][j]表示第i個數字的是排第j的方案數。我們並不需要知道具體的大小。只需要知道它在前i個數字里排第幾了。
如果i-1 到i是上升,要第i個數字排第j大的話,第i-1個數字就只能排(1 ~ j-1),
dp[i][j]=∑k=1j−1dp[i−1][k]
如果是下降的,第i-1個數字必須排在(j ~ i),
dp[i][j]=∑k=jidp[i−1][k]
如果是不確定的話那麼第i-1個數的排位就是隨意的了
dp[i][j]=∑k=1idp[i−1][k]
用sum記錄和就可以兩重循環搞定了。還有注意一些邊界情況。
code
#include <bits/stdc++.h>
using namespace std;
#define MAXN 1000+5
#define MOD 1000000007
char str[MAXN];
long long dp[MAXN][MAXN];
int main () {
for (; scanf ("%s", str+1) == 1; ) {
int n = strlen(str+1);
dp[0][1] = 1;
for (int i=1; i<=n; i++) {
long long sum = 0;
if (str[i] == 'I') {
sum = dp[i-1][1];
dp[i][1] = 0;
for (int j=2; j<=i+1; j++) {
dp[i][j] = sum;
sum = (sum + dp[i-1][j]) % MOD;
}
}
else if (str[i] == 'D') {
sum = 0;
dp[i][i+1] = 0;
for (int j=i; j>=0; j--) {
sum = (sum + dp[i-1][j]) % MOD;
dp[i][j] = sum;
}
}
else {
for (int j=1; j<=i; j++) {
sum = (sum + dp[i-1][j]) % MOD;
}
for (int j=1; j<= i+1; j++) {
dp[i][j] = sum;
}
}
}
int ans = 0;
for (int i=1; i<=n+1; i++) {
ans = (ans + dp[n][i]) % MOD;
}
printf ("%d\n", ans);
}
return 0;
}
I - The Boss on Mars
題意
求小於n個並且於n互素的素的四次方的和。 (n≤108)
思路
首先,有個公式:
_f(n)=14+24+34+...+n4=6n5+15n4+10n3−n30
直接計算是不可能的,因爲n有可能是個大素數,然後所有的比他小的數都和他互素。而不互素的數相對好求,就是其素因子的倍數,所以可以求出總的然後從中減去不互素的。若n存在一個素因子p,則其倍數均不與n互素,共有n/p個數。其四次方的和爲
p4+(2p)4+(3p)4+...+(n/p∗p)4=p4∗(14+24+34+...+(n/p)4)=p4∗_f(n/p)
於是我們可以處理楚n的素因子。個數好像在10個內吧?但是這樣還有一個問題,就是會重複計算某些數。所以要用容斥原理搞一下。除法要用到逆元。還有n等於1的時候要特判。
#include <bits/stdc++.h>
using namespace std;
long long MOD = 1000000007L;
long long n;
long long power(long long n, long long p) {
long long res = 1;
while (p) {
if (p & 1) res = (res * n) % MOD;
n = (n * n) % MOD;
p >>= 1;
}
return res;
}
long long Inv(long long a) {
return power(a, MOD-2);
}
long long p[15], _cnt;
void div(long long s) {
_cnt = 0;
for (int i=2; i*i<=s; i++) {
if (s % i != 0) continue;
while (s % i == 0) s /= i;
p[_cnt++] = (long long)i;
}
if (s != 1) p[_cnt++] = s;
}
long long _f(long long n, long long p) {
return power(n, p);
}
long long calu(int k) {
// cout << _f(1,5) << endl;
long long res = 0;
res = (res + (6 * (_f(k, 5))) % MOD) % MOD;
res = (res + (15 * (_f(k, 4))) % MOD) % MOD;
res = (res + (10 * (_f(k, 3))) % MOD) % MOD;
// cout <<"res: " << res << endl;
res = (res + MOD - k) % MOD;
res = (res * Inv(30L)) % MOD;
return res;
}
long long _get(long long _s) {
long long _r = 1;
int _c = 0;
for (int i=0; i<_cnt; i++) {
if (((_s >> i) & 1) == 1) {
_r = (_r * p[i]) % MOD;
_c++;
}
}
// cout << _r << endl;
long long res = (_f(_r, 4) * calu(n / _r)) % MOD;
if (_c & 1) return res;
else return (MOD - res) % MOD;
}
int main () {
int T;
scanf ("%d", &T);
while (T--) {
scanf ("%I64d", &n);
if (1 == n) {cout << 0 << endl; continue;}
div(n);
long long ans = 0;
for (int s=1; s<(1 << _cnt); s++) {
ans = (ans + _get(s)) % MOD;
}
ans = (calu(n) - ans + 10 * MOD) % MOD;
printf ("%I64d\n", ans);
}
return 0;
}