常见的校验方法有:
奇偶校验、循环冗余校验CRC、异或校验、校验和、汉明校验
1. 奇偶校验:一个二进码字,如果它的码元有奇数个1,就称为具有奇性。例如,码字“1011010111”有七个1,因此,这个码字具有奇性。同样,偶性码字具有偶数个1。注意奇性检测等效于所有码元的模二加,并能够由所有码元的异或运算来确定。对于一个n位字,奇性由式(8- 1)给出:
奇性=a0⊕a1⊕a2⊕…⊕an (8-1)在一个典型系统里,在传输以前,由奇偶发生器把奇偶监督位加到每个字中。原有信息中的数字在接收机中被检测,如果没有出现正确的奇、偶性,这个信息标定为错误的,这个系统将把错误的字抛掉或者请求重发。注意,用单个的奇偶监督码仅能检出奇数个码元的错误。
2. 循环冗余校验码(CRC):在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。 校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。
将有效的卡号接字节作异或(XOR)校验:
然后将接收到的数据合成一个字节数据
最后测试最后接收到的数据是否与我们收到的卡号的校验数据一致
IP首部校验和字段是根据IP首部计算的校验和码,它不对首部后面的数据进行计算。ICMP、IGMP、UDP和TCP在它们各自的首部中均含有同时覆盖首部和数据校验和码
5.汉明编码
汉明码是一种线性分组码。线性分组码是指将信息序列划分为长度为k的序列段,在每一段后面附加r位的监督码,且监督码和信息码之间构成线性关系,即它们之间可由线性方程组来联系。这样构成的抗干扰码称为线性分组码。
编码原理
设码长为n,信息位长度为k,监督位长度为r=n-k。如果需要纠正一位出错,因为长度为n的序列上每一位都可能出错,一共有n种情况,另外还有不出错的情况,所以我们必须用长度为r的监督码表示出n+1种情况。而长度为r的监督码一共可以表示2^r种情况。因此 2^r >= n + 1, 即r >= log(n+1)
我们以一个例子来说明汉明码。假设k=4,需要纠正一位错误,则 2^r >= n + 1 = k + r + 1 = 4 + r + 1 解得r >= 3。我们取r=3,则码长为3+4=7。用a6,a5,...a0表示这7个码元。用S1,S2,S3表示三个监关系式中的校正子。
我们作如下规定(这个规定是任意的):
S1 S2 S3 错码的位置
0 0 1 a0
0 1 0 a1
1 0 0 a2
0 1 1 a3
1 0 1 a4
1 1 0 a5
1 1 1 a6
0 0 0 无错
按照表中的规定可知,仅当一个错码位置在a2,a4,a5或a6时校正子S1为1,否则S1为0。这就意味着a2,a4,a5,a6四个码元构成偶校验关系:
S1 = a6⊕a5⊕a4⊕a2 (1)式
同理,可以得到:
S2 = a6⊕a5⊕a3⊕a1 (2)式
S3 = a6⊕a4⊕a3⊕a0 (3)式
在发送信号时,信息位a6,a5,a4,a3的值取决于输入信号,是随机的。
监督为a2,a1,a0应该根据信息位的取值按照监督关系决定,即监督位的取值应该使上述(1)(2)(3)式中的S1,S2,S3为0,这表示初始情况下没有错码。即 a6⊕a5⊕a4⊕a2 = 0
a6⊕a5⊕a3⊕a1 = 0
a6⊕a4⊕a3⊕a0 = 0
由上式进行移项运算,得到:
a2 = a6⊕a5⊕a4
a1 = a6⊕a5⊕a3
a0 = a6⊕a4⊕a3
已知信息位后,根据上式即可计算出a2,a1,a0三个监督位的值。
接收端受到每个码组后,先按照(1)~(3)式计算出S1,S2,S3,然后查表可知错码情况。
例如,若接收到的码字为0000011,按照(1)~(3)计算得到:
S1 = 0, S2 = 1, S3 = 1
查表可得在a3位有一个错码。
这种编码方法的最小汉明距离为d=3,所以这种编码可以纠正一个错码或者检测两个错码。