笔记:Matrix completion by Truncated Nuclear Norm Regularization

本文详细探讨了Zhang等人的CVPR论文,介绍了一种新的矩阵补全方法——截断核范数正则化(TNNR)。TNNR通过仅最小化较小的奇异值,更好地逼近矩阵秩,区别于传统的核范数方法。文章讨论了ADMM和APGL优化算法,并通过实验展示了TNNR在图像恢复中的优势。
摘要由CSDN通过智能技术生成

Zhang, D., Hu, Y., Ye, J., Li, X., & He, X. (2012, June). Matrix completion by truncated nuclear norm regularization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2192-2199.
本文是这篇 CVPR 会议论文的笔记,主要是对文中的理论方法进行展开详解。本人学术水平有限,文中如有错误之处,敬请指正。
另外:这篇会议论文于 2013 年发表于 PAMI 期刊上,两篇 paper 的内容基本一致。
Hu, Y., Zhang, D., Ye, J., Li, X., & He, X. (2013). Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2117-2130.

摘要:估计视觉图像中缺失的值是计算机视觉中有挑战的问题,其可以被认为是一个低秩的近似问题。大部分的研究都是用核范数来代替秩操作。然而,在核范数最小化过程中,所有的奇异值一起被最小化,在实际中秩不能被很好地近似。此文提出了一种 Truncated Nuclear Norm Regularization (TNNR) 方法,只最小化较小的 Nr 个部分奇异值,其中 N 是奇异值的总个数, r 是矩阵的秩。这样可以更好地近似矩阵的秩。此文更设计了两种高效的优化算法,alternating direction method of multipliers (ADMM) 和 accelerated proximal gradient line search (APGL) 方法。

图像大小为 400x500,但是主要信息集中于前 20 个特征值

1 简介

在许多的实际的计算视觉和模式识别中,比如图像恢复,数据中有丢失的部分。估计这些矩阵中丢失值得问题,即矩阵补全,已经受到了相当多的关注。视觉数据,,比如图像,有可能是低秩的,如图所示。于是,大部分的矩阵补全问题都旨在找到一个低秩的近似问题。具体的,给定一个不完整的数据 MRm×n ,矩阵补全问题可被阐述为

minX s.t. rank(X)Xij=Mij, (i,j) Ω,(1)

其中 XRm×n Ω 是已知的元素的对应的位置集合。

然而, 以上的秩最小化问题是 NP-hard,因为其非凸性和不连续性。一种广泛采用的方法是核范数,即奇异值之和,作为一个凸的代替方法。受压缩感知的启发, Cand e` s 和 Recht 最近提出,如果矩阵的行空间和列空间是与标准基不一致的,那么核范数最小化可以恢复出矩阵,如果有足够的已知的元素。

已有的核范数方法,比如 singular value thresholding (SVT 1),能够在无噪声的合成数据中获得较好的表现。然而,它们在真实的应用中不能得到低秩的解。这是因为核范数不能精确地近似秩函数。具体地,对比秩函数来说,所有的非零的奇异值都被平等处理,核范数则并不是。更差的是,这些方法优势甚至不收敛。因为核范数的理论的要求(比如不一致的性质)在实际中很难被满足。

此文提出了一种新的矩阵补全的方法,truncated nuclear norm regularization (TNNR),来恢复矩阵中一些缺失的数据。于一般核范数的方法不同的是,并不是同时最小化所有奇异值的和,此文的方法仅最小化较小的 min(m,n)r 个奇异值。这样,该方法可以获得一个更精确、鲁棒性的对秩函数的近似。此外,此文提出了两种简单的,高效的优化机制解决目标函数,即 alternating direction method of multipliers (ADMM) 2 和 accelerated proximal gradient line search method (APGL) 3

2 相关工作

稀疏表示,低秩矩阵分解相关,略

3 Truncated Nuclear Norm Regularization

X=(x,,xn) 成为一个 m×n 矩阵, Ω{ 1,,m}×{ 1,,n} 表示矩阵 X 中已知元素的索引, Ωc 表示缺失元素的索引。可以方便的表示已知的元素

(XΩ)ij={ Xij,0,if (i,j)Ω,if (i,j)Ωc.(2)

正如之前描述的,核范数不能确保很好的近似秩函数在实际中。首先介绍一个定义
定义 3.1 给定一个矩阵 XRm×n ,truncated nuclear norm ||X||r 定义为最小的 min(m,n)r 个奇异值之和,也就是 ||X||r=min(m,n)i=r+1σi(X) 。于是,目标函数可以写为
minXs.t.||X||r  XΩ=MΩ.(3)

明显与传统的核范数不同,求解该问题一直可以得到低秩解,只要其存在。由于 ||X||r 是非凸的,不容易直接求解。于是,有如下的定义。
Theorem 3.1 对于给定的矩阵 XRm×n ARm×m BRm×n ,和 AAT=I, BBT=I 。对于正的整数 rmin(m,n) ,我们有
tr(AXBT)i=1rσi(X).(4)

证明 根据 Von Neumann 迹不等式,我们得到
tr(AXBT)=tr(XBTA)i=1min(m,n)σi(X)σi(BTA),(5)

其中 σ1(X)σmin(m,n)(X)0 。由于 rank(A)=r rank(B)=r ,所以有 rank(BTA)=sr 。对于 is σi(BTA)>0 σ2i(BTA) 是矩阵 BTAATB=BTB 的第 i 个特征值,也是 BTB=I 的一个特征值。所以 σi(BTA)=1 ,对 i=1,2,,r ,其余的都是 0
i=1min(m,n)σi(X)σi(BTA)=i=1sσi(X)σi(BTA)+i=s+1min(m,n)σi(X)σi(BTA)=i=1sσi(X)1+
  • 6
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值