logistic 回归(二)

学会了简单的logistic的回归后,一定会发现这个函数无法适用于大规模数据,因为数据量太大的时候,计算量的规模是几何式增长的。接下来我们讨论下如何优化logistic回归,现在我们来写个简单的优化函数:

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

当然这个函数依然非常简单,感觉是否没有什么变化,相对于前面的梯度优化,但是仔细观察发现这个随机梯度优化使用的是简单的单个值,而非矩阵,这样计算量就减少为原来的1/n,嘿嘿。当然天下没有免费的午餐,这种优化的后果当然是精度损失了。不过这种损失在数据量比较大的时候还是可以原谅的。

下面来一种精度和效率兼顾的方式,这种方法比前面的一种稍显复杂了一点。我们来看代码吧。

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not 
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

呵呵,这样我们的logistic回归的大多数方法就都实现了。当然还少了测试部分的代码:

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

这样所有的代码就都有了,然后我们就可以使用这些东西来做点事情了。好了logistic回归我也刚刚理解了,至于高深的优化目标函数,这里就先不拿出来了,因为我也没看懂,O(∩_∩)O哈哈~



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值