配置好了Spark的集群环境,尝试弄个WordCount的例子,下面是具体的例子代码(javaAPI实现)
package com.test;
import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
public class WordCount {
private static final Pattern SPACE = Pattern.compile(" ");
public static void main(String[] args) {
JavaSparkContext ctx = new JavaSparkContext("spark://192.168.100.103:7077","WordCount",System.getenv("SPARK_HOME"),JavaSparkContext.jarOfClass(WordCount.class));
JavaRDD<String> lines = ctx.textFile("hdfs://192.168.100.103:9000/flume/test.log");
ctx.addJar("/home/bms/WordCount.jar");
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String,String>(){
@Override
public Iterable<String> call(String arg0) throws Exception {
return Arrays.asList(SPACE.split(arg0));
}
});
JavaPairRDD<String,Integer> ones = words.mapToPair(new PairFunction<String,String,Integer>(){
@Override
public Tuple2<String, Integer> call(String arg0) throws Exception {
return new Tuple2<String,Integer>(arg0,1);
}
});
JavaPairRDD<String,Integer> counts = ones.reduceByKey(new Function2<Integer,Integer,Integer>(){
@Override
public Integer call(Integer arg0, Integer arg1) throws Exception {
return arg0 + arg1;
}
});
List<Tuple2<String, Integer>> output = counts.collect();
for(Tuple2<?,?> tuple : output){
System.out.println(tuple._1()+ ":" + tuple._2());
}
ctx.stop();
}
}
注意:
1)ctx.addJar("/home/bms/WordCount.jar");是WordCount导出可运行的jar包的存放目录,我是直接在eclipse上直接编译运行的。在运行之前,先导出WordCount.jar。
2)spark://192.168.100.103:7077代表的Spark集群的master节点
3)SPARK_HOME代表的是Spark的环境变量
4)hdfs://192.168.100.103:9000/flume/test.log是我在hdfs上面存放的一个测试文件,文件内容是:
a a a
b b b
c c c
5)程序执行结果是:
b:3
a:3
c:3
6)WordCount初步试验成功。