贪心算法常见与不常见应用

本文探讨了贪心算法的使用条件和与动态规划的区别,并通过背包问题、上台阶问题和求最大异或值等实例展示了贪心算法的应用。在01背包问题中,贪心策略用于求最多件数;上台阶问题通过贪心策略证明了最少新增台阶数;而求一组数据中最大异或值问题,利用贪心思想从高位开始寻找异或最大化方案。
摘要由CSDN通过智能技术生成

贪心算法的使用条件:

1- 问题可以分解成子问题

2- 子问题的局部最优解就是最终问题全局的最优解

贪心算法与动态规划不同点:

贪心算法的每个局部解只求一次,局部就有最优解,没有其它可能性,求下一个局部解不再回退。动态规划的某个状态不能确定最优解,保留了所有可能性,通过转移相当于由状态A的m个解求出状态B的n个解。

常见贪心算法的应用:

哈夫曼编码、图的最小生成树

问题:背包问题使用贪心

01背包问题:
A 求最多件数(LeetCode 1833)
B 求最满
C 每件物品还有分数,求总分最高

——A是贪心, B/C 是动态规划

问题:上台阶问题

1936. 新增的最少台阶数

输入已有台阶、最大单次跨度,求为了到达终点,最少新增几个台阶

怎样证明贪心:已有台阶是免费的,要尽可能的使用

问题:求一组数据中最大异或值

421. 数组中两个数的最大异或值

给你一个整数数组 nums ,返回 nums[i] XOR nums[j] 的最大运算结果,其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值