算法分析与实践8-矩阵链的乘法

1.问题
在这里插入图片描述
在这里插入图片描述
2.解析
在这里插入图片描述
在这里插入图片描述
3.设计
void solve(){
输入矩阵的个数
// 连乘数如果为三个矩阵 3 x 4, 4 x 5, 5 x 6
// p就为 3 4 5 6
for(int i = 0; i < n + 1; ++i) cin >> p[i];
// 初始化第单个矩阵连乘为0
for(int i = 0; i <= n; ++i) m[i][i] = 0;
// 矩阵规模大小
for(int r = 2; r <= n; ++r){
// i是左边界
for(int i = 1; i <= n - r + 1; ++i){
// j是右边界
int j = r + i - 1;
m[i][j] = m[i][i] + m[i + 1][j] + p[i - 1] * p[i] * p[j];
for(int k = i + 1; k < j; ++k){
int temp = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
// 取出最小值
if(temp < m[i][j]){
m[i][j] = temp;
}
}
}
}

返回值
}

4.分析
时间复杂度:T(n)=O(n³)

5.源码
https://github.com/xujinyuanky/-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值