更加丰富内容可查看我的个人博客:xukang’s blog
对于这道题,首先题目给出一个注意点:一个数只能用一次!但是并不代表数组没有重复元素!
所以这算是这道题需要考虑的另一个注意点:重复元素怎么办?
map存储只能存储一个是否对这道题有用呢?
这道题虽然看似简单,但是有一些细节的地方需要考虑清楚,在leetcode评论区,我发现好多人都没有真正理解两遍hash和一遍hash这两种方法,还有人甚至理解不能重复使用元素就是没有重复元素!
方法1、暴力法
最简单也很容易想到,但是时间复杂度很高! O(N^2)
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
vector<int> res;
for (int i = 0; i < nums.length; i++) {
//j = i + 1 不能重复使用
for (int j = i + 1; j < nums.length; j++) {
if (nums[j] == target - nums[i]) {
res.push_back(i);
res.push_back(j);
return res;
}
}
}
return res;
}
};
方法2、双指针
刚看到这道题,我的第一想法是双指针!先排序然后双指针,用map存储下标!
但是发现问题并没有我想得那么容易,重复问题需要仔细考虑!这里如果用map存储下标,我解决不了重复问题,从而弃用map!直接拷贝一份,在副本中查找,因为重复元素在排序后的先后顺序是不变的!
时间复杂度 O(NlogN)
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
//拷贝一份
vector<int> tmp(nums);
//排序O(NlongN)
sort(nums.begin(), nums.end());
//双指针
int i = 0;
int j = nums.size() - 1;
while (i < j) {
if (nums[i] + nums[j] < target) i++;
if (nums[i] + nums[j] > target) j--;
if (nums[i] + nums[j] == target) break;
}
vector<int> res;
if (i == j) return res;
for (int k = 0; k < nums.size(); k++) {
if (tmp[k] == nums[i]) {
res.push_back(k);
break;
}
}
for (int k = 0; k < nums.size(); k++) {
// k != res[0], 下标不能一样,每个元素只能使用一次
if (tmp[k] == nums[j] && k != res[0]) {
res.push_back(k);
break;
}
}
return res;
}
};
方法3、两遍hash表
在第一次迭代中,我们将每个元素的值和它的索引添加到hash表中。
在第二次迭代中,我们将检查每个元素所对应的目标元素(target−nums[i]
)是否存在于表中。注意,该目标元素不能是
nums[i]
本身!
- 是否解决重复元素的问题!
因为每次网hash表中添加元素的时候,重复元素会覆盖之前的下标。仔细体会!!!
- 复杂度分析:
- 时间复杂度:O(N),
我们把包含有 N 个元素的列表遍历两次。由于哈希表将查找时间缩短到
O(1) 所以时间复杂度为 O(N)。- 空间复杂度:O(N),
所需的额外空间取决于哈希表中存储的元素数量,该表中存储了
N 个元素。
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
map<int, int> my_map;
for (int i = 0; i < nums.size(); i++)
my_map.insert(pair<int, int>(nums[i], i));
for (int i = 0; i < nums.size(); i++) {
// my_map[target - nums[i]] != i 不能重复使用
if (my_map.count(target - nums[i]) && my_map[target - nums[i]] != i) {
return vector<int>{i, my_map[target - nums[i]]};
}
}
return vector<int>();
}
};
方法4、一遍hash表
- 怎么理解一边hash?
- 可以将两遍hash合成一边hash,因为很容易发现两遍hash,在第二遍hash查找的过程中每次查找都是在整个数组范围内查找,虽然查找的时间复杂度为O(1) ,但是还可简化!!!
- 其实就是对暴力搜索的直接优化! 理解暴力搜索即可!
- 注意如何解决重复使用问题
其实跟暴力搜索一样,每次搜索的返回不包括本身!
- 是否解决重复元素的问题!
同样能解决重复问题
- 复杂度分析:
- 时间复杂度:O(N),
我们只遍历了包含有 N个元素的列表一次。在表中进行的每次查找只花费O(1) 的时间。- 空间复杂度:O(N),
所需的额外空间取决于哈希表中存储的元素数量,该表中存储了
N 个元素。
/*
//暴力搜索的另一种写法!
vector<int> twoSum(vector<int>& nums, int target) {
for (int i = 0; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] + nums[j] == target)
return vector<int>{i, j};
}
}
return vector<int>{};
}
*/
vector<int> twoSum(vector<int>& nums, int target) {
map<int, int> my_map;
for (int i = 0; i < nums.size(); i++) {
int complement = target - nums[i];
if (my_map.count(complement)) {
return vector<int>{i, my_map[complement]};
} else {
my_map[nums[i]] = i;
}
}
return vector<int>();
}